Radionuclide hybrid imaging in common garden slugs (Arionidae)

2020 ◽  
Author(s):  
N Beindorff ◽  
D Messroghli ◽  
JF Eary ◽  
W Brenner
Keyword(s):  
2003 ◽  
Vol 29 (2) ◽  
pp. 179-188
Author(s):  
Abdelaziz Abbad ◽  
Abdelbasset El Hadrami ◽  
Abderrazzak Benchaabane

2021 ◽  
pp. 1-6
Author(s):  
Jessica S. Ambriz ◽  
Clementina González ◽  
Eduardo Cuevas

Abstract Fuchsia parviflora is a dioecious shrub that depends on biotic pollination for reproduction. Previous studies suggest that the male plants produce more flowers, and male-biased sex ratios have been found in some natural populations. To assess whether the biased sex ratios found between genders in natural populations are present at the point at which plants reach sexual maturity, and to identify possible trade-offs between growth and reproduction, we performed a common garden experiment. Finally, to complement the information of the common garden experiment, we estimated the reproductive biomass allocation between genders in one natural population. Sex ratios at reaching sexual maturity in F. parviflora did not differ from 0.5, except in one population, which was the smallest seedling population. We found no differences between genders in terms of the probability of germination or flowering. When flowering began, female plants were taller than males and the tallest plants of both genders required more time to reach sexual maturity. Males produced significantly more flowers than females, and the number of flowers increased with plant height in both genders. Finally, in the natural population studied, the investment in reproductive biomass was seven-fold greater in female plants than in male plants. Our results showed no evidence of possible trade-offs between growth and reproduction. Despite the fact that female plants invest more in reproductive biomass, they were taller than the males after flowering, possibly at the expense of herbivory defence.


2021 ◽  
Author(s):  
Anna Kirschbaum ◽  
Oliver Bossdorf ◽  
J F Scheepens

Abstract Aims Plant populations in managed grasslands are subject to strong selection exerted by grazing, mowing and fertilization. Many previous studies showed that this can cause evolutionary changes in mean trait values, but little is known about the evolution of phenotypic plasticity in response to land use. In this study, we aimed to elucidate the relationships between phenotypic plasticity – specifically, regrowth ability after biomass removal – and the intensity of grassland management and levels of temporal variation therein. Methods We conducted an outdoor common garden experiment to test if plants from more intensively mown and grazed sites showed an increased ability to regrow after biomass removal. We used three common plant species from temperate European grasslands, with seed material from 58 – 68 populations along gradients of land-use intensity, ranging from extensive (only light grazing) to very intensive management (up to four cuts per year). Important findings In two out of three species, we found significant population differentiation in regrowth ability after clipping. While variation in regrowth ability was unrelated to the mean land-use intensity of populations of origin, we found a relationship with its temporal variation in P. lanceolata, where plants experiencing less variable environmental conditions over the last 11 years showed stronger regrowth in reproductive biomass after clipping. Therefore, while mean grazing and mowing intensity may not select for regrowth ability, the temporal stability of the environmental heterogeneity created by land use may have caused its evolution in some species.


Author(s):  
Stefan A. Koerber ◽  
R. Finck ◽  
K. Dendl ◽  
M. Uhl ◽  
T. Lindner ◽  
...  

Abstract Purpose A high expression of fibroblast activation protein (FAP) was observed in multiple sarcomas, indicating an enormous potential for PET/CT using 68Ga-radiolabeled inhibitors of FAP (FAPI). Therefore, this retrospective study aimed to evaluate the role of the novel hybrid imaging probe for sarcomas as a first clinical evaluation. Methods A cohort of 15 patients underwent 68Ga-FAPI-PET/CT for staging or restaging. The acquisition of PET scans was performed 60 min after administration of 127 to 308 MBq of the tracer. The uptake of 68Ga-FAPI in malignant tissue as well as in healthy organs was quantified by standardized uptake values SUVmean and SUVmax. Results Excellent tumor-to-background ratios (> 7) could be achieved due to low background activity and high SUVmax in primary tumors (median 7.16), local relapses (median 11.47), and metastases (median 6.29). The highest uptake was found for liposarcomas and high-grade disease (range 18.86–33.61). A high SUVmax (> 10) was observed for clinically more aggressive disease. Conclusion These preliminary findings suggest a high potential for the clinical use of 68Ga-FAPI-PET/CT for patients diagnosed with sarcoma.


Author(s):  
K. Jeannet Oyen ◽  
Laura E. Jardine ◽  
Zachary M. Parsons ◽  
James D. Herndon ◽  
James P. Strange ◽  
...  

2021 ◽  
Author(s):  
Guido Bonthond ◽  
Till Bayer ◽  
Stacy A. Krueger-Hadfield ◽  
Nadja Stärck ◽  
Gaoge Wang ◽  
...  

AbstractInvasive species are co-introduced with microbiota from their native range and also interact with microbiota found in the novel environment to which they are introduced. Host flexibility toward microbiota, or host promiscuity, is an important trait underlying terrestrial plant invasions. To test whether host promiscuity may be important in macroalgal invasions, we experimentally simulated an invasion in a common garden setting, using the widespread invasive macroalga Agarophyton vermiculophyllum as a model invasive seaweed holobiont. After disturbing the microbiota of individuals from native and non-native populations with antibiotics, we monitored the microbial succession trajectories in the presence of a new source of microbes. Microbial communities were strongly impacted by the treatment and changed compositionally and in terms of diversity but recovered functionally by the end of the experiment in most respects. Beta-diversity in disturbed holobionts strongly decreased, indicating that different populations configure more similar –or more common– microbial communities when exposed to the same conditions. This decline in beta-diversity occurred not only more rapidly, but was also more pronounced in non-native populations, while individuals from native populations retained communities more similar to those observed in the field. This study demonstrates that microbial communities of non-native A. vermiculophyllum are more flexibly adjusted to the environment and suggests that an intraspecific increase in host promiscuity has promoted the invasion process of A. vermiculophyllum. This phenomenon may be important among invasive macroalgal holobionts in general.


2021 ◽  
Vol 14 ◽  
pp. 194008292110365
Author(s):  
Thomas E. Marler ◽  
Anders J. Lindström

Background and Aims Research required to clarify leaf nutrient relations of cycad species has been inadequate. Common garden studies are useful for determining the influence of genetics on leaf traits because of the homogeneous environment among experimental units. To date, there have been no common garden studies which included all ten genera of cycads. The full phylogenetic breadth has, therefore, not been included in this important area of study. Methods We examined macronutrient and micronutrient content of leaves from one representative species from each of the ten cycad genera at Nong Nooch Tropical Botanical Garden in Thailand. Nitrogen content was determined by dry combustion, and the remaining nutrients were quantified by spectrometry. Results The least variable elements were nitrogen and phosphorus, and the most variable elements were boron and sodium. Nutrient content based on leaflet area was more variable than based on leaflet mass, reflecting species differences in specific leaf area. There were no universal macronutrient or micronutrient signals indicating clear phylogenetic distinctions. Implications for Conservation: Active management of threatened cycad taxa requires research to develop the knowledge to enable evidence-based decisions. This common garden study inclusive of all 10 cycad genera creates a foundation to determine leaf nutrient sufficiency ranges to inform management decisions.


Mobile DNA ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guillaume Wos ◽  
Rimjhim Roy Choudhury ◽  
Filip Kolář ◽  
Christian Parisod

Abstract Background Plant genomes can respond rapidly to environmental changes and transposable elements (TEs) arise as important drivers contributing to genome dynamics. Although some elements were reported to be induced by various abiotic or biotic factors, there is a lack of general understanding on how environment influences the activity and diversity of TEs. Here, we combined common garden experiment with short-read sequencing to investigate genomic abundance and expression of 2245 consensus TE sequences (containing retrotransposons and DNA transposons) in an alpine environment in Arabidopsis arenosa. To disentangle general trends from local differentiation, we leveraged four foothill-alpine population pairs from different mountain regions. Seeds of each of the eight populations were raised under four treatments that differed in temperature and irradiance, two factors varying with elevation. RNA-seq analysis was performed on leaves of young plants to test for the effect of elevation and subsequently of temperature and irradiance on expression of TE sequences. Results Genomic abundance of the 2245 consensus TE sequences varied greatly between the mountain regions in line with neutral divergence among the regions, representing distinct genetic lineages of A. arenosa. Accounting for intraspecific variation in abundance, we found consistent transcriptomic response for some TE sequences across the different pairs of foothill-alpine populations suggesting parallelism in TE expression. In particular expression of retrotransposon LTR Copia (e.g. Ivana and Ale clades) and LTR Gypsy (e.g. Athila and CRM clades) but also non-LTR LINE or DNA transposon TIR MuDR consistently varied with elevation of origin. TE sequences responding specifically to temperature and irradiance belonged to the same classes as well as additional TE clades containing potentially stress-responsive elements (e.g. LTR Copia Sire and Tar, LTR Gypsy Reina). Conclusions Our study demonstrated that the A. arenosa genome harbours a considerable diversity of TE sequences whose abundance and expression response varies across its native range. Some TE clades may contain transcriptionally active elements responding to a natural environmental gradient. This may further contribute to genetic variation between populations and may ultimately provide new regulatory mechanisms to face environmental challenges.


Sign in / Sign up

Export Citation Format

Share Document