scholarly journals Influence of contralateral hearing of unilaterally aided CI recipients on speech understanding in a simulated restaurant environment: Do directional microphone technologies help?

2021 ◽  
Author(s):  
J Galindo Guerreros ◽  
G Grimm ◽  
V Hohmann ◽  
T Wesarg ◽  
A Aschendorff
2019 ◽  
Vol 30 (08) ◽  
pp. 731-734
Author(s):  
Michael F. Dorman ◽  
Sarah Cook Natale

AbstractWhen cochlear implant (CI) listeners use a directional microphone or beamformer system to improve speech understanding in noise, the gain in understanding for speech presented from the front of the listener coexists with a decrease in speech understanding from the back. One way to maximize the usefulness of these systems is to keep a microphone in the omnidirectional mode in low noise and then switch to directional mode in high noise.The purpose of this experiment was to assess the levels of speech understanding in noise allowed by a new signal processing algorithm for MED EL CIs, AutoAdaptive, which operates in the manner described previously.Seven listeners fit with bilateral CIs were tested in a simulation of a crowded restaurant with speech presented from the front and from the back at three noise levels, 45, 55, and 65 dB SPL.The listeners were seated in the middle of an array of eight loudspeakers. Sentences from the AzBio sentence lists were presented from loudspeakers at 0 or 180° azimuth. Restaurant noise at 45, 55, and 65 dB SPL was presented from all eight loudspeakers. The speech understanding scores (words correct) were subjected to a two-factor (speaker location and noise level), repeated measures, analysis of variance with posttests.The analysis of variance showed a main effect for level and location and a significant interaction. Posttests showed that speech understanding scores from front and back loudspeakers did not differ significantly at the 45- and 55-dB noise levels but did differ significantly at the 65-dB noise level—with increased scores for signals from the front and decreased scores for signals from the back.The AutoAdaptive feature provides omnidirectional benefit at low noise levels, i.e., similar levels of speech understanding for talkers in front of, and in back of, a listener and beamformer benefit at higher noise levels, i.e., increased speech understanding for signals from in front. The automatic switching feature will be of value to the many patients who prefer not to manually switch programs on their CIs.


Author(s):  
Jourdan T. Holder ◽  
Adrian L. Taylor ◽  
Linsey W. Sunderhaus ◽  
Rene H. Gifford

Background: Despite improvements in cochlear implant (CI) technology, pediatric CI recipients continueto have more difficulty understanding speech than their typically hearing peers in background noise. Avariety of strategies have been evaluated to help mitigate this disparity, such as signal processing, remotemicrophone technology, and microphone placement. Previous studies regarding microphoneplacement used speech processors that are now dated, and most studies investigating the improvementof speech recognition in background noise included adult listeners only.Purpose: The purpose of the present study was to investigate the effects of microphone location andbeamforming technology on speech understanding for pediatric CI recipients in noise.Research Design: A prospective, repeated-measures, within-participant design was used to compareperformance across listening conditions.Study Sample: A total of nine children (aged 6.6 to 15.3 years) with at least one Advanced Bionics CIwere recruited for this study.Data Collection and Analysis: The Basic English Lexicon Sentences and AzBio Sentences were presentedat 0° azimuth at 65-dB SPL in +5 signal-to-noise ratio noise presented from seven speakers usingthe R-SPACE system (Advanced Bionics, Valencia, CA). Performance was compared across three omnidirectionalmicrophone configurations (processor microphone, T-Mic 2, and processor + T-Mic 2) andtwo directional microphone configurations (UltraZoom and auto UltraZoom). The two youngest participantswere not tested in the directional microphone configurations.Results: No significant differences were found between the various omnidirectional microphone configurations.UltraZoom provided significant benefit over all omnidirectional microphone configurations(T-Mic 2, p = 0.004, processor microphone, p < 0.001, and processor microphone + T-Mic 2, p = 0.018)but was not significantly different from auto UltraZoom (p = 0.176).Conclusions: All omnidirectional microphone configurations yielded similar performance, suggesting thata child’s listening performance in noise will not be compromised by choosing the microphone configurationbest suited for the child. UltraZoom (adaptive beamformer) yielded higher performance than all omnidirectional microphonesin moderate background noise for adolescents aged 9 to 15 years. The implicationsof these data suggest that for older children who are able to reliably use manual controls, UltraZoom willyield significantly higher performance in background noise when the target is in front of the listener.


Author(s):  
Robert V. Shannon

The auditory brainstem implant (ABI) is a surgically implanted device to electrically stimulate auditory neurons in the cochlear nucleus complex of the brainstem in humans to restore hearing sensations. The ABI is similar in function to a cochlear implant, but overall outcomes are poorer. However, recent applications of the ABI to new patient populations and improvements in surgical technique have led to significant improvements in outcomes. While the ABI provides hearing benefits to patients, the outcomes challenge our understanding of how the brain processes neural patterns of auditory information. The neural pattern of activation produced by an ABI is highly unnatural, yet some patients achieve high levels of speech understanding. Based on a meta-analysis of ABI surgeries and outcomes, a theory is proposed of a specialized sub-system of the cochlear nucleus that is critical for speech understanding.


2002 ◽  
Vol 13 (06) ◽  
pp. 295-307 ◽  
Author(s):  
Mary T. Cord ◽  
Rauna K. Surr ◽  
Brian E. Walden ◽  
Laurel Olson

This study explored the use patterns and benefits of directional microphone technology in real world situations experienced by patients who had been fitted with switchable omnidirectional/directional hearing aids. Telephone interviews and paper-and-pencil questionnaires were used to assess perceived performance with each microphone type in a variety of listening situations. Patients who used their hearing aids regularly and switched between the two microphone configurations reported using the directional mode, on average, about one-quarter of the time. From brief descriptions, patients could identify listening situations in which each microphone mode should provide superior performance. Further, they reported encountering listening situations in which an omnidirectional microphone should provide better performance more frequently than listening situations in which the directional microphones should be superior. Despite using the omnidirectional mode more often and encountering situations in which an omnidirectional microphone should provide superior performance more frequently, participants reported the same level of satisfaction with each microphone type.


Sign in / Sign up

Export Citation Format

Share Document