Sulfilimines Synthesis from Grignard Reagents and Sulfinimidate Esters

Synfacts ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. 1241
Keyword(s):  
2020 ◽  
Author(s):  
Lei Liu ◽  
Wes Lee ◽  
Cassandra R. Youshaw ◽  
Mingbin Yuan ◽  
Michael B. Geherty ◽  
...  

The first iron-catalyzed three-component cross-coupling of unactivated olefins with alkyl halides and Grignard reagents is reported. The reaction operates under fast turnover frequency and tolerates a diverse range of sp2-hybridized nucleophiles, alkyl halides, and unactivated olefins bearing diverse functional groups to yield the desired 1,2-alkylarylated products with high regiocontrol. Further, we demonstrate that this protocol is amenable for the synthesis of new (hetero)carbocycles including tetrahydrofurans and pyrrolidines via a three-component radical cascade cyclization/arylation that forges three new C-C bonds.


Author(s):  
Lei Liu ◽  
Wes Lee ◽  
Mingbin Yuan ◽  
Chris Acha ◽  
Michael B. Geherty ◽  
...  

Design and implementation of the first (asymmetric) Fe-catalyzed intra- and intermolecular difunctionalization of vinyl cyclopropanes (VCPs) with alkyl halides and aryl Grignard reagents has been realized via a mechanistically driven approach. Mechanistic studies support the diffusion of the alkyl radical intermediates out of the solvent cage to participate in an intra- or -intermolecular radical cascade with the VCP followed by re-entering the Fe radical cross-coupling cycle to undergo selective C(sp2)-C(sp3) bond formation. Overall, we provide new design principles for Fe-mediated radical processes and underscore the potential of using combined computations and experiments to accelerate the development of challenging transformations.


1979 ◽  
Vol 44 (6) ◽  
pp. 1731-1741 ◽  
Author(s):  
Andrej Staško ◽  
Ľubomír Malík ◽  
Alexander Tkáč ◽  
Vladimír Adamčík ◽  
Eva Maťašová

Reactions of R2,R3-alkyl substituted 2-hydroxybenzenecarboxylic acids 2-HO-C6H2R2-COOH with Grignard reagents R1MgBr in the presence of nickel give stable aryl alkyl ketyl radicals 2-O--R2-, R3-C6H2-CO--R1 where R1 = CH3, C2H5, C2D5, n-C3H7 and R2,R3 = CH3, C2H5, i-C3H7, t-C4H9. The β protons of ketyl group are equivalent (splitting constant 1.25 mT) and non-equivalent (splitting constants within 0.5 to 1.5 mT) for R1 = methyl and other alkyl groups, respectively. Interaction of the γ protons with the unpaired electron was only observed in the case of R1 = n-propyl (splitting constants about 0.07 mT). The substituents R1 have but slight effect on values of splitting constants of the protons in R2,R3 and vice versa. Also splitting constants of the benzene nucleus (a4H = 0.55 mT, a6H = 0.44 mT) are only slightly affected by the substituents R1,R2,R3, which indicates dominant electron-donor effect of the oxido-anion group eliminating the relatively smaller contributions of the alkyl substituents.


1993 ◽  
Vol 62 (2-3) ◽  
pp. 201-206 ◽  
Author(s):  
S. Watanabe ◽  
K. Sugahara ◽  
T. Fujita ◽  
M. Sakamoto ◽  
T. Kitazume
Keyword(s):  

1999 ◽  
Vol 23 (2) ◽  
pp. 164-165
Author(s):  
Goverdhan L. Kad ◽  
Anupam Khurana ◽  
Vasundhara Singh ◽  
Jasvinder Singh

Terpenoids 1 and 2 have been synthesized from readily available starting materials using Li2CuCI4-catalysed coupling of Grignard reagents with alkyl/aryl bromides and microwave-assisted oxidation of allylic methyl groups, using SeO2/ButOOH adsorbed over SiO2 as key steps.


Sign in / Sign up

Export Citation Format

Share Document