Association between Forefoot Bone Length and Performance in Male Endurance Runners

2018 ◽  
Vol 39 (04) ◽  
pp. 275-281 ◽  
Author(s):  
Hiromasa Ueno ◽  
Tadashi Suga ◽  
Kenji Takao ◽  
Takahiro Tanaka ◽  
Jun Misaki ◽  
...  

AbstractRecently, we reported that the forefoot bones were longer in sprinters than in non-sprinters, and that longer forefoot bones correlated with higher sprint performance in sprinters. To further understand the superiority of long forefoot bones in athletic performance, we examined whether forefoot bone length was associated with running performance in endurance runners. The length of the forefoot bones of the big and second toes were measured using magnetic resonance imaging in 45 male well-trained endurance runners and 45 male untrained subjects. After normalization with the foot length, it was found that the forefoot bones of the big and second toes were significantly longer in endurance runners than in untrained subjects (P<0.05 for both). Furthermore, longer forefoot bones of the big toe, but not of the second toe, correlated significantly with better personal best 5000-m race time in endurance runners (r=−0.322, P=0.031). The present findings demonstrated that forefoot bones were longer in endurance runners than in untrained subjects. These findings were similar to our findings for sprinters. In addition, we found that longer forefoot bones may be advantageous for achieving higher running performance in endurance runners.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tadashi Suga ◽  
Msafumi Terada ◽  
Takahiro Tanaka ◽  
Yuto Miyake ◽  
Hiromasa Ueno ◽  
...  

Abstract This study examined the relationships between the foot bone morphologies and sprint performance in sprinters. Foot images in 56 male sprinters obtained using magnetic resonance imaging. The relative lengths of the forefoot bones of the big and second toes, which were calculated as total lengths of the forefoot bones for each toe normalized to the foot length, correlated significantly with personal best 100-m sprint time (r =  − 0.293 and − 0.459, both Ps < 0.05). The relative lengths of the rearfoot talus and calcaneus normalized to the foot length also correlated significantly with the sprint performance (r =  − 0.378 and − 0.496, both Ps < 0.05). Furthermore, the relative height of the calcaneus, but not the talus, normalized to body height correlated significantly with sprint performance (r =  − 0.690, P < 0.001). Additionally, the relative calcaneus height correlated significantly with the foot arch height index (r = 0.420, P = 0.001), and the foot arch height index correlated significantly with sprint performance (r =  − 0.517, P < 0.001). These findings suggest that the taller calcaneus may be a key morphological factor for achieving superior sprint performance, potentially via modeling the longer forefoot and rearfoot bones and functional foot morphology in sprinters.


2019 ◽  
Vol 70 (1) ◽  
pp. 165-172 ◽  
Author(s):  
Hiromasa Ueno ◽  
Tadashi Suga ◽  
Kenji Takao ◽  
Yuto Miyake ◽  
Masafumi Terada ◽  
...  

Abstract The present study aimed to determine the relationship between leg bone length and running performance in well-trained endurance runners. The lengths of the leg bones in 42 male endurance runners (age: 20.0 ± 1.0 years, body height: 169.6 ± 5.6 cm, body mass: 56.4 ± 5.1 kg, personal best 5000-m race time: 14 min 59 s ± 28 s) were measured using magnetic resonance imaging. The lengths of the femur and tibia were calculated to assess the upper and lower leg lengths, respectively. The total length of the femur + tibia was calculated to assess the overall leg bone length. These lengths of the leg bones were normalized with body height, which was measured using a stadiometer to minimize differences in body size among participants. The relative tibial length was significantly correlated with personal best 5000-m race time (r = -0.328, p = 0.034). Moreover, a trend towards significance was observed in the relative femoral length (r = -0.301, p = 0.053). Furthermore, the relative total lengths of the femur + tibia were significantly correlated with personal best 5000-m race time (r = -0.353, p < 0.05). These findings suggest that although the relationship between the leg bone length and personal best 5000-m race time was relatively minor, the leg bone length, especially of the tibia, may be a potential morphological factor for achieving superior running performance in well-trained endurance runners.


Author(s):  
Byron Bernal

AbstractFunctional magnetic resonance imaging (fMRI) has become a broadly accepted presurgical mapping tool for pediatric populations with brain pathology. The aim of this article is to provide general guidelines on the pragmatic aspects of performing and processing fMRI, as well as interpreting its results across children of all age groups. Based on the author's accumulated experience of more than 20 years on this specific field, these guidelines consider many factors that include the particular physiology and anatomy of the child's brain, and how specific peculiarities may pose disadvantages or even certain advantages when performing fMRI procedures. The author carefully details the various challenges that the practitioner might face in dealing with limited volitional behavior and language comprehension of infants and small children and remedial strategies. The type and proper choice of task-based paradigms in keeping with the age and performance of the patient are discussed, as well as the appropriate selection and dosage of sedative agents and their inherent limitations. Recommendations about the scanner and settings for specific sequences are provided, as well as the required devices for appropriate stimulus delivery, response, and motion control. Practical aspects of fMRI postprocessing and quality control are discussed. Finally, given the relevance of resting-state-fMRI for use in noncooperative patients, a praxis-oriented guide to obtain, classify, and understand the spontaneous neural networks (utilizing independent component analysis) is also provided. The article concludes with a thorough discussion about the possible pitfalls at different stages of the fMRI process.


Anaesthesia ◽  
2011 ◽  
Vol 67 (1) ◽  
pp. 33-39 ◽  
Author(s):  
R. M. Adapa ◽  
R. G. Axell ◽  
J. S. Mangat ◽  
T. A. Carpenter ◽  
A. R. Absalom

Sign in / Sign up

Export Citation Format

Share Document