Trace eyeblink conditioning in human subjects with focal cerebellar lesions

2005 ◽  
Vol 32 (S 4) ◽  
Author(s):  
M Gerwig ◽  
K Hajjar ◽  
K Haerter ◽  
A Dimitrova ◽  
M Maschke ◽  
...  
2005 ◽  
Vol 170 (1) ◽  
pp. 7-21 ◽  
Author(s):  
M. Gerwig ◽  
K. Haerter ◽  
K. Hajjar ◽  
A. Dimitrova ◽  
M. Maschke ◽  
...  

2008 ◽  
Vol 35 (S 01) ◽  
Author(s):  
M Gerwig ◽  
H Guberina ◽  
A.C Eßer ◽  
A Floßdorf ◽  
B Schoch ◽  
...  

Author(s):  
Wei-Wei Zhang ◽  
Rong-Rong Li ◽  
Jie Zhang ◽  
Jie Yan ◽  
Qian-Hui Zhang ◽  
...  

AbstractWhile the hippocampus has been implicated in supporting the association among time-separated events, the underlying cellular mechanisms have not been fully clarified. Here, we combined in vivo multi-channel recording and optogenetics to investigate the activity of hippocampal interneurons in freely-moving mice performing a trace eyeblink conditioning (tEBC) task. We found that the hippocampal interneurons exhibited conditioned stimulus (CS)-evoked sustained activity, which predicted the performance of conditioned eyeblink responses (CRs) in the early acquisition of the tEBC. Consistent with this, greater proportions of hippocampal pyramidal cells showed CS-evoked decreased activity in the early acquisition of the tEBC. Moreover, optogenetic suppression of the sustained activity in hippocampal interneurons severely impaired acquisition of the tEBC. In contrast, suppression of the sustained activity of hippocampal interneurons had no effect on the performance of well-learned CRs. Our findings highlight the role of hippocampal interneurons in the tEBC, and point to a potential cellular mechanism subserving associative learning.


Sign in / Sign up

Export Citation Format

Share Document