A novel local search algorithm for the minimum capacitated dominating set

2018 ◽  
Vol 69 (6) ◽  
pp. 849-863 ◽  
Author(s):  
Ruizhi Li ◽  
Shuli Hu ◽  
Peng Zhao ◽  
Yupeng Zhou ◽  
Minghao Yin
Author(s):  
Shaowei Cai ◽  
Wenying Hou ◽  
Yiyuan Wang ◽  
Chuan Luo ◽  
Qingwei Lin

Minimum dominating set (MinDS) is a canonical NP-hard combinatorial optimization problem with applications. For large and hard instances one must resort to heuristic approaches to obtain good solutions within reasonable time. This paper develops an efficient local search algorithm for MinDS, which has two main ideas. The first one is a novel local search framework, while the second is a construction procedure with inference rules. Our algorithm named FastDS is evaluated on 4 standard benchmarks and 3 massive graphs benchmarks. FastDS obtains the best performance for almost all benchmarks, and obtains better solutions than state-of-the-art algorithms on massive graphs.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1173 ◽  
Author(s):  
Ruizhi Li ◽  
Shuli Hu ◽  
Huan Liu ◽  
Ruiting Li ◽  
Dantong Ouyang ◽  
...  

The minimum connected dominating set (MCDS) problem is a very significant NP-hard combinatorial optimization problem, and it has been used in many fields such as wireless sensor networks and ad hoc networks. In this paper, we propose a novel multi-start local search algorithm (MSLS) to tackle the minimum connected dominating set problem. Firstly, we present the fitness mechanism to design the vertex score mechanism so that our algorithm can jump out of the local optimum. Secondly, we use the configuration checking (CC) mechanism to avoid the cycling problem. Then, we propose the vertex flipping mechanism to change the vertex state by combing the CC mechanism with the vertex score mechanism. Finally, we propose a multi-start local search framework based on these mechanisms. We compare the algorithm MSLS with other compared algorithms on extensive instances. The results of experiment show that MSLS is superior to other algorithms in solution quality and time efficiency on most instances.


Author(s):  
Bohan Li ◽  
Xindi Zhang ◽  
Shaowei Cai ◽  
Jinkun Lin ◽  
Yiyuan Wang ◽  
...  

The minimum connected dominating set (MCDS) problem is an important extension of the minimum dominating set problem, with wide applications, especially in wireless networks. Despite its practical importance, there are few works on solving MCDS for massive graphs, mainly due to the complexity of maintaining connectivity. In this paper, we propose two novel ideas, and develop a new local search algorithm for MCDS called NuCDS. First, a hybrid dynamic connectivity maintenance method is designed to switch alternately between a novel fast connectivity maintenance method based on spanning tree and its previous counterpart. Second, we define a new vertex property called \emph{safety} to make the algorithm more considerate when selecting vertices. Experiments show that NuCDS significantly outperforms the state-of-the-art MCDS algorithms on both massive graphs and classic benchmarks.


IEEE Access ◽  
2018 ◽  
pp. 1-1 ◽  
Author(s):  
Ruizhi Li ◽  
Huan Liu ◽  
Xiaoli Wu ◽  
Jun Wu ◽  
Minghao Yin

Author(s):  
Yiyuan Wang ◽  
Shaowei Cai ◽  
Jiejiang Chen ◽  
Minghao Yin

The minimum weight dominating set (MWDS) problem is NP-hard and also important in many applications. Recent heuristic MWDS algorithms can hardly solve massive real world graphs effectively. In this paper, we design a fast local search algorithm called FastMWDS for the MWDS problem, which aims to obtain a good solution on massive graphs within a short time. In this novel local search framework, we propose two ideas to make it effective. Firstly, we design a new fast construction procedure with four reduction rules to cut down the size of massive graphs. Secondly, we propose the three-valued two-level configuration checking strategy to improve local search, which is interestingly a variant of configuration checking (CC) with two levels and multiple values. Experiment results on a broad range of massive real world graphs show that FastMWDS finds much better solutions than state of the art MWDS algorithms.


Sign in / Sign up

Export Citation Format

Share Document