Posttreatment of Effluent from Coke-Plant Wastewater Treatment System in Sequencing Batch Reactors

1997 ◽  
Vol 123 (3) ◽  
pp. 305-308 ◽  
Author(s):  
Hanqing Yu ◽  
Guowei Gu ◽  
Leping Song
1995 ◽  
Vol 32 (11) ◽  
pp. 1-11 ◽  
Author(s):  
Mohamed F. Hamoda ◽  
Saed M. Al-Awadi

Field sampling and laboratory experimentation were conducted on wastewater effluent generated at a dairy farm in order to characterise the wastewater, evaluate existing primary treatment facilities, and examine an appropriate wastewater treatment system to produce good quality effluents. It has been found that the farm contributes effluents containing considerable loads of organics, solids and nutrient pollutants. Existing treatment facilities which are limited to batch-operated primary settling tanks, are not capable of producing good quality effluent. Experimentation on an aerobic, suspended growth, biological system using sequencing batch reactors (SBR) indicated that the pollutant loads in the primary-treated effluent could be substantially reduced. The study showed that a wastewater treatment system involving primary settling tanks combined with additional aerobic biological treatment is capable of removing about 94% COD and 96% SS from the farm effluents. This system could be easily integrated and coordinated with existing facilities. A wastewater management scheme has been proposed to include waste minimisation, waste treatment and effluent reuse in irrigation.


1997 ◽  
Vol 35 (6) ◽  
pp. 63-70 ◽  
Author(s):  
Yoshimasa Watanabe ◽  
Yoshihiko Iwasaki

This paper describes a pilot plant study on the performance of a hybrid small municipal wastewater treatment system consisting of a jet mixed separator(JMS) and upgraded RBC. The JMS was used as a pre-treatment of the RBC instead of the primary clarifier. The treatment capacity of the system was fixed at 100 m3/d, corresponding to the hydraulic loading to the RBC of 117 L/m2/d. The effluent from the grid chamber at a municipal wastewater treatment plant was fed into the hybrid system. The RBC was operated using the electric power produced by a solar electric generation panel with a surface area of 8 m2 under enough sunlight. In order to reduce the organic loading to the RBC, polyaluminium chloride(PAC) was added to the JMS influent to remove the colloidal and suspended organic particles. At the operational condition where the A1 dosage and hydraulic retention time of the JMS were fixed at 5 g/m3 and 45 min., respectively, the average effluent water quality of hybrid system was as follows: TOC=8 g/m3, Total BOD=8 g/m3, SS=8 g/m3, Turbidity=6 TU, NH4-N=7 g/m3, T-P=0.5 g/m3. In this operating condition, electric power consumption of the RBC for treating unit volume of wastewater is only 0.07 KWH/m3.


Sign in / Sign up

Export Citation Format

Share Document