Hysteresis Sliding Friction of Rubber—Finite Element Analysis

1990 ◽  
Vol 116 (1) ◽  
pp. 217-232 ◽  
Author(s):  
N. Purushothaman ◽  
Ian D. Moore
1999 ◽  
Author(s):  
Richard B. Englund ◽  
David H. Johnson ◽  
Shannon K. Sweeney

Abstract A finite element analysis (FEA) model of the interaction of a nut and bolt was used to investigate the effects of sliding, friction, and yielding in a bolted connection. The finite element model was developed as a two-dimensional, axisymmetric system, which allowed the study of axial and radial loading and displacements. This model did not permit evaluation of hoop or torsional effects such as tightening or the helical thread form. Results presented in this paper include the distribution of load between consecutive threads, the relative sliding along thread faces, and the stress distribution and regions of yielding in the model. Finally, a comparison to previous, linear analysis work and to published experimental data is made to conclude the paper.


Author(s):  
Christoph Grossmann ◽  
Oliver Tegel

Abstract In this paper, the finite element analysis of circular wedge connections is described, and conclusions for the performance of the connection are derived. In the foreground of the examinations are stresses and deformations while tightening of the connection. Starting with the general structural performance, the influences on power transmission like slope, number of wedges, coefficient of sliding friction and outer hub diameter are discussed. An analytic function to describe the gap pressure within the tightened joint is introduced and rates to explain the problem of centering of circular wedge connections are shown. Finally two concepts for dimensioning are presented and recommendations for application of this connection are given.


2013 ◽  
Vol 690-693 ◽  
pp. 3316-3320 ◽  
Author(s):  
Chi Liu ◽  
Yi Lun Liu ◽  
Li Yong Ma ◽  
Pin Yuan

Wire spinning, which is a deformation process of great complexity in laying head pipe, was simulated using MSC. Marc, a software for finite element analysis, with the aid of production data collected in a high-speed wire spinning production line. The stress condition and the temperature distribution of the laying head inner wall, under the condition of high speed dry sliding friction, were obtained. The effects of different feed speeds on the contact stress and the transient temperature of the easily-wear part were analyzed. The simulation result coincides with the actual wear condition in the laying head pipe, indicating the soundness of the finite element model and making a contribution to optimizing the special curve of the laying head pipe and the finished rolling speed.


Author(s):  
D. Barlam ◽  
I. Garbar ◽  
L. Levi

The Finite Element Method (FEM) is widely used for modeling strain distribution during friction contact. One of the necessary conditions for such modeling is the correspondence between structural changes in a material surface layers and Finite Element Analysis results. The present study is dedicated to the possibility of using FEM as a tool to predict structural changes of material surface layers during friction depending on material properties and friction conditions. Contact during friction with reciprocating and unidirectional sliding between two surfaces under condition of plane strain had been modeled using commercial Finite Element (FE) code. The correlation between FE results and structural results, obtaining by electron microscopy and X-ray, were studied for the primary and secondary running-in processes. An elastic-plastic model had been used to learn the influence of different contact parameters such as: pressure, hardening, friction coefficient and geometry of asperities on the FE modeling results. Correlation between the FEM predictions and structural results such as dislocation’s density and distribution, were studied in a qualitative manner revealing that plastic strain results can be used to predict structural changes of material under sliding friction.


2002 ◽  
Vol 11 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Chatchai Kunavisarut ◽  
Lisa A. Lang ◽  
Brian R. Stoner ◽  
David A. Felton

Sign in / Sign up

Export Citation Format

Share Document