Adverse Local Wind Loads Induced by Adjacent Building

1983 ◽  
Vol 109 (3) ◽  
pp. 816-820 ◽  
Author(s):  
David Surry ◽  
William Mallais
2017 ◽  
Vol 21 (10) ◽  
pp. 1469-1481 ◽  
Author(s):  
Wonsul Kim ◽  
Yukio Tamura ◽  
Akihito Yoshida ◽  
Jin-Hak Yi

This article focuses on variations of local wind forces along height levels of a tall building due to an adjacent tall building with various height and breadth ratios through huge wind tunnel experiments. It deals with the characteristics of local wind forces including root mean square local wind force coefficients, non-dimensional power spectra, and root coherences along height levels of a tall building with an adjacent tall building in critical locations. It is shown that increases of over 20% in interference factors ( MIFMD, RIFMD, and RIFML) for maximum mean and root mean square base overturning moment coefficients in along- and across-wind directions occur when the adjacent building is close to the principal building. Higher and wider adjacent buildings can cause not only higher mean wind loads but also higher dynamic wind loads in along- and across-wind directions, but the critical locations of an adjacent building with various height and breadth ratios are somewhat different. However, most critical locations of an adjacent building for wind-induced wind loads are within the region ( X/ B, Y/ B) = (1.5, 0–1.5).


2013 ◽  
Vol 871 ◽  
pp. 9-14
Author(s):  
Ki Pyo You ◽  
Young Moon Kim ◽  
Jang Youl You

The construction of another tall building in the close vicinity of existing building may lead to a modification in its response. Therefore, the wind loads on buildings in realistic environments may be considerably different from these measured on isolated buildings. Neighboring buildings may either decrease or increase the flow-induced forces on a structure, depending mainly on the geometry and arrangement of these buildings, their orientation with respect to the direction of flow and upstream terrain conditions. In this study deals with mean and fluctuating as well as their spectra on a building due to an adjacent building of side ratio 1 for wind direction from 0 to 45 degree and separation distance between two models. Interference effects were presented in the form of interference factors. And experiments were compared to these measured on isolated building.


2018 ◽  
Vol 22 (5) ◽  
pp. 1238-1250 ◽  
Author(s):  
Hao Wang ◽  
Shitang Ke ◽  
Yaojun Ge ◽  
Yukio Tamura

The wind loads distribution on the super-large cooling tower under the interference effect of tower group is very complicated. Particularly, energy distribution of fluctuation wind loads and extreme model is difficult to be predicted. However, accurate calculations of these two factors are the most direct ways for analysis of wind resistance dynamics of super-large cooling tower. The wind tunnel tests of the highest super-large cooling tower under five typical tower combinations (serial, rectangular, rhombus, L-shaped, and inclined L-shaped) with 320 working conditions were performed. On this basis, non-Gaussian and non-stationary properties of local wind pressure and overall force coefficient of super-large cooling tower were analyzed. Distribution laws of local wind pressure extremes and overall force coefficient extremes were discussed based on Hermite method and peak factor method. Key attention was paid to the mapping relationships of characteristic angles with local and overall aerodynamic force extremes. The effects of four-tower combination modes on fluctuation wind loads energy of super-large cooling tower were studied based on the power spectral density function, intrinsic mode function, and evolution power spectral density function. Besides, the estimation formulas of local wind pressure spectrum and overall pressure coefficient spectrum of super-large cooling tower under four-tower combination were proposed. It can be found that the extremes of local wind pressure and overall aerodynamic force could be predicted based on the linear relationship between characteristic angles and fluctuation wind loads. In addition, it is suggested to choose serial combination first, followed by inclined L-shaped, L-shaped, rhombus, and rectangular modes successively.


2008 ◽  
Vol 96 (6-7) ◽  
pp. 1015-1028 ◽  
Author(s):  
Yasushi Uematsu ◽  
Theodore Stathopoulos ◽  
Eri Iizumi

Author(s):  
H. W. Tieleman ◽  
M. A. K. Elsayed ◽  
M. R. Hajj
Keyword(s):  

2021 ◽  
Author(s):  
Thomas G. Ivanco ◽  
Donald F. Keller ◽  
Jennifer L. Pinkerton

Sign in / Sign up

Export Citation Format

Share Document