adjacent building
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 26)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 1203 (2) ◽  
pp. 022109
Author(s):  
Helin Için ◽  
Görün Arun

Abstract Historical masonry structures that make up the cultural assets of a country constitute the identity of the society to which it belongs. For this reason, it should be protected and should be transferred from generation to generation. Earthquakes are threatening action to masonry structures. The force generated by the ground movement may cause shear cracks in masonry structures that may lead to fragmentation and even collapse of the structure. It is necessary to know the earthquake behaviour of masonry structures to be able to apply appropriate temporary shoring system after a damage caused by earthquake in order to prevent the future damages during aftershocks. Thus, the progress of the damages in the building is prevented and it is ensured to survive until detailed investigation or restoration. However, when the applied temporary shoring system designs were examined, the environmental conditions of the building were not taken into account in any guideline on immediate shoring. In this paper, temporary shoring system for 3 traditional houses of Bey District is designed for possible earthquake damages. This district has many registered civil architectures lined side by side along very narrow streets. Some masonry buildings were changed to reinforced concrete with multiple floors. This study includes the registration status of the buildings, their location, the number of floors to be supported, the heights between floors, the height of the forces that can be brought by the adjacent building elements, the width of the street where the facade to be supported, whether there is a window or door opening in the facade to be supported etc. If there are window or door openings, the distances of the opening to the corner points of the building and the distances between the two openings has to be recorded. According to these determinations, possible damages that may occur in the buildings are defined and a temporary shoring system is designed in accordance with the buildings and the surrounding conditions.


Author(s):  
Sudhir Kumar

Abstract: Many past earthquake studies show that during strong vibrations, the adjacent building structures which are closely spaced to each other are vulnerable to severe damage when the adjacent buildings are not at an adequate distance to accommodate their relative displacements. The primary goal of this research is to find out the minimum separation gap between buildings of varying height at the same floor-to-floor height level. SAP 2000 software is used to analyze the structural behavior of building during the earthquake.Three building models are taken for the study, one is six floors (G+6) and another two are nine floors (G+9), and twelve floors (G+12) respectively. Six floors (G+6)& twelve floors (G+12) structures have the same floor to floor height and plan and same beam and column size (equal stiffness) and G+9 buildings have floor to floor height are same but different beam and column sizes (different stiffness). The linear dynamic (RSA) analysis method is used to calculate the response (Displacement, frequency at fundamental time, Base Shear) of the structure at different floors levels. Response (top story displacements) calculated from the response spectrum is compared with the provisions of seismic gap per story height given in IS 4326: 2005.


2021 ◽  
Vol 1 (2) ◽  
pp. 55-60
Author(s):  
Annisa Junaid

Fondasi harus dibangun di atas tanah keras agar bangunan tetap stabil dan kokoh. Memastikan kekuatan fondasi adalah upaya dini untuk mencegah sudden collapse pada bangunan di kemudian hari. Penelitian ini dilakukan untuk mengetahui kuat dukung tanah pada ujung tiang fondasi dan mengamati sejauh apa kerusakan beton tiang bor pada bangunan yang baru masih dalam tahap pembangunan fondasi. Data penelitian diperoleh dari hasil pengujian PDA (Pile Driving Analyzer) dan PIT (Pile Integrity Test) pada fondasi bangunan jenis bored pile D80. Pada gedung yang berdekatan, yang dikerjakan dengan sistem yang sama dan menggunakan spun pile D50. Data kuat dukung ultimate hasil manometer alat uji hidraulik 175 ton untuk pile D50. Dari analisis uji PDA, diperoleh nilai kuat dukung ijin rata-rata tiang bor adalah 70,25 ton (51%). Analisis ulang terhadap kombinasi beban menghasilkan tambahan spun pile di 44 titik. Pada beton bored pile yang mengalami kerusakan, dilakukan perbaikan seperti penambahan cor pada lapisan luar (concrete-jacketing) untuk menutupi lapisan tulangan yang terekspos, dan penambahan tulangan terpisah di sisi dalam beton untuk antisipasi bila tulangan luar rusak akibat korosi.The foundation must be placed on hard rock so that the building remains stable and solid. Thus, ensuring the strength of the foundation is an early effort to prevent sudden collapse of the building in the future. This research was conducted to determine the bearing strength of the soil at the ends of the foundation piles and to observe the extent of the damage to the drill pile concrete in the new building which is still in the foundation construction stage. The research data were obtained from the results of PDA (Pile Driving Analyzer) and PIT (Pile Integrity Test) testing on the foundation of the bored pile type D80 building. The adjacent building is being worked on with the same system and using a D50 spun pile. With the ultimate bearing strength data, the results of the hydraulic tool manometer = 175 tons for D50 piles. PDA test analysis obtained the average allowable bearing strength of the drill pile is 70.25 tons (51%). The re-analysis of the load combination resulted in additional spun piles at 44 points. In the damaged bored pile concrete, namely by adding cast to the outer layer (concrete-jacketing) to cover the exposed reinforcement layer, and adding separate reinforcement on the inside of the concrete to anticipate if the outer reinforcement is damaged due to corrosion.Fondasi harus dibangun di atas tanah keras agar bangunan tetap stabil dan kokoh. Memastikan kekuatan fondasi adalah upaya dini untuk mencegah sudden collapse pada bangunan di kemudian hari. Penelitian ini dilakukan untuk mengetahui kuat dukung tanah pada ujung tiang fondasi dan mengamati sejauh apa kerusakan beton tiang bor pada bangunan yang baru masih dalam tahap pembangunan fondasi. Data penelitian diperoleh dari hasil pengujian PDA (Pile Driving Analyzer) dan PIT (Pile Integrity Test) pada fondasi bangunan jenis bored pile D80. Pada gedung yang berdekatan, yang dikerjakan dengan sistem yang sama dan menggunakan spun pile D50. Data kuat dukung ultimate hasil manometer alat uji hidraulik 175 ton untuk pile D50. Dari analisis uji PDA, diperoleh nilai kuat dukung ijin rata-rata tiang bor adalah 70,25 ton (51%). Analisis ulang terhadap kombinasi beban menghasilkan tambahan spun pile di 44 titik. Pada beton bored pile yang mengalami kerusakan, dilakukan perbaikan seperti penambahan cor pada lapisan luar (concrete-jacketing) untuk menutupi lapisan tulangan yang terekspos, dan penambahan tulangan terpisah di sisi dalam beton untuk antisipasi bila tulangan luar rusak akibat korosi.


2021 ◽  
Vol 20 ◽  
pp. 196-208
Author(s):  
Pedro Folhento ◽  
Rui Carneiro De Barros ◽  
Manuel Braz-César

Structural pounding has been found to have a significant influence on the dynamic behavior of building structures under earthquake excitations. This phenomenon is more probable when the buildings have insufficient separation distance and substantial different dynamic properties. In large cities, it is more common for adjacent buildings to have unequal heights, leading to different demands in the structures’ stories under earthquake-induced pounding. Hence, in this study five different buildings’ configurations with equal or unequal heights and subjected to different ground motions are considered, to study how pounding influences the dynamic behavior of the involved structures. It was found, among other results, that the peak responses tend to suffer amplifications at the stories of the taller building above the height of the shorter building.


2021 ◽  
Author(s):  
Kelsey Saunders

The global population is growing exponentially with a trend of people moving to cities, resulting in rapid growth in the urban built environment. It is critical for urban planners to promote health, comfort, and resiliency in urban areas through integrated solar access requirements within zoning regulations. This paper evaluates the potential for the Solar Envelope Zoning (SEZ) method as a zoning tool in Toronto, Canada. The SEZ method is compared with current zoning regulations and mid-rise buildings guidelines using parametric modelling to establish the solar envelope on a typical building site. The resulting development density and solar radiation incident on adjacent building facades is evaluated. A similar study is performed on a site that is currently proposed for development along one of Toronto’s main avenues. The results show that by redefining solar access requirements to include climate dependent variables, SEZ can provide competitive development density while improving solar access.


2021 ◽  
Author(s):  
Kelsey Saunders

The global population is growing exponentially with a trend of people moving to cities, resulting in rapid growth in the urban built environment. It is critical for urban planners to promote health, comfort, and resiliency in urban areas through integrated solar access requirements within zoning regulations. This paper evaluates the potential for the Solar Envelope Zoning (SEZ) method as a zoning tool in Toronto, Canada. The SEZ method is compared with current zoning regulations and mid-rise buildings guidelines using parametric modelling to establish the solar envelope on a typical building site. The resulting development density and solar radiation incident on adjacent building facades is evaluated. A similar study is performed on a site that is currently proposed for development along one of Toronto’s main avenues. The results show that by redefining solar access requirements to include climate dependent variables, SEZ can provide competitive development density while improving solar access.


2021 ◽  
Vol 22 (2) ◽  
pp. 1-9 ◽  
Author(s):  
Martín Cárdenas Soto ◽  
José Piña Flores ◽  
David Escobedo Zenil ◽  
Jesús Sánchez González ◽  
José Antonio Martínez González

To explore the usefulness of the ambient seismic noise tomography method for characterizing the subsoil surface structure, in this study, we apply this method to contribute to geotechnical decision-making in the construction of a school building. We used a rectangular array (36x56 m) of 48-4.5 Hz vertical geophones and produce surface wave tomographies from the travel times of Rayleigh waves extracted by cross-correlation of seismic noise. We determined a final 3D Vs model using 1D models derived from the inversion of dispersion curves obtained from the tomography maps for different frequencies. The 3D model shows an excellent resolution (vertical and lateral); we observe critical velocity contrasts in the range of 2 to 15 m deep. At depths higher than 15 m, the velocity has values close to 900 m/s; however, we observe a low-velocity anomaly associated with a lava tube or crack that seems to continue under an adjacent building.


Sign in / Sign up

Export Citation Format

Share Document