carbon fibre reinforced polymer
Recently Published Documents





2022 ◽  
Vol 22 (1) ◽  
Bartosz Piątek ◽  
Tomasz Siwowski

AbstractThe paper presents the research on reinforced concrete (RC) beams strengthened with carbon fibre reinforced polymer (CFRP) strips with various configurations in terms of anchoring and tensioning. The five full-scale RC beams with the total length of 6.0 m were strengthened with passive strips, without and with mechanical anchorages at their ends, as well as with strips tensioned by the novel prestressing system with three various prestressing levels ranging from 30 to 50% of the CFRP tensile strength. All RC beams were tested under static flexural load up to failure and they were investigated in a full range of flexural behaviour, including the post-debonding phase. The main parameters considered in this study include the use of mechanical anchorages, the effect of tensioning the strips and the influence of the various prestressing levels. Several performance indicators have been established to evaluate the beams’ behaviour. The study revealed that the RC beams strengthened using tensioned CFRP strips exhibited a higher cracking, yielding and ultimate moments as compared to the beams with passively bonded CFRP strips. Moreover, increasing the beams’ prestressing level has a significant positive influence on the performance of strengthened beams. However, it did not affect the ultimate load-bearing capacity of the beams. The optimal prestressing level for the novel system has been determined as 60% of CFRP tensile strength.

2022 ◽  
pp. 002199832110652
Rochele Pinto ◽  
Gediminas Monastyreckis ◽  
Hamza Mahmoud Aboelanin ◽  
Vladimir Spacek ◽  
Daiva Zeleniakiene

This article presents the possibility of strength improvement and energy absorption of carbon fibre reinforced polymer composites by matrix modification. In this study, the mechanical properties of bisphenol-A epoxy matrix and carbon fibre reinforced polymer composites were modified with four different wt.% of star-shaped polymer n-butyl methacrylate (P n-BMA) block glycidyl methacrylate (PGMA). The tensile strength of the epoxy with 1 wt.% star-shaped polymer showed 128% increase in comparison to unmodified epoxy samples. Two different wt.% were then used for the modification of carbon fibre-reinforced polymer composite samples. Tensile tests and low-velocity impact tests were conducted for characterising modified samples. Tensile test results performed showed a slight improvement in the tensile strength and modulus of the composite. Low-velocity impact tests showed that addition of 1 wt.% star-shaped polymer additives increase composite energy absorption by 53.85%, compared to pure epoxy composite specimens. Scanning electron microscopy (SEM) analysis of post-impact specimens displays fracture modes and bonding between the matrix and fibre in the composites. These results demonstrate the potential of a novel star-shaped polymer as an additive material for automotive composite parts, where energy absorption is significant.

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 222
Sheikh Rehman ◽  
Julio Gomez ◽  
Elvira Villaro ◽  
Dwane Cossey ◽  
Panagiotis G. Karagiannidis

In this work, we report the synthesis and study of nanocomposites with a biobased epoxy/amine (Epilok 60-600G/Curamine 30-952) matrix reinforced with reduced graphene oxide (rGO) or functionalised with 3-glycidoxypropyltrimethoxysilane (GLYMO-rGO). These graphene related materials (GRMs) were first dispersed into a Curamine hardener using bath ultrasonication, followed by the addition of epoxy resin. Curing kinetics were studied by DSC under non-isothermal and isothermal conditions. The addition of 1.5 wt% of GLYMO-rGO into the epoxy matrix was found to increase the degree of cure by up to 12% and glass transition temperature by 14 °C. Mechanical testing showed that the addition of 0.05 wt% GLYMO-rGO improves Young’s modulus and tensile strength by 60% and 16%, respectively, compared to neat epoxy. Carbon fibre reinforced polymer (CFRP) laminates were prepared via hand lay up, using the nanocomposite system GRM/Epilok/Curamine as matrix, and were cut as CFRP adherents for lap shear joints. GRM/Epilok/Curamine was also used as adhesive to bond CFRP/CFRP and CFRP/aluminium adherents. The addition of 0.1 wt% GLYMO-rGO into the adhesive and CRFP adherents showed improved lap shear strength by 23.6% compared to neat resin, while in the case of CFRP/Aluminium joints the increase was 21.2%.

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4430
Sankar Karuppannan Gopalraj ◽  
Ivan Deviatkin ◽  
Mika Horttanainen ◽  
Timo Kärki

There are forecasts for the exponential increase in the generation of carbon fibre-reinforced polymer (CFRP) and glass fibre-reinforced polymer (GFRP) composite wastes containing valuable carbon and glass fibres. The recent adoption of these composites in wind turbines and aeroplanes has increased the amount of end-of-life waste from these applications. By adequately closing the life cycle loop, these enormous volumes of waste can partly satisfy the global demand for their virgin counterparts. Therefore, there is a need to properly dispose these composite wastes, with material recovery being the final target, thanks to the strict EU regulations for promoting recycling and reusing as the highest priorities in waste disposal options. In addition, the hefty taxation has almost brought about an end to landfills. These government regulations towards properly recycling these composite wastes have changed the industries’ attitudes toward sustainable disposal approaches, and life cycle assessment (LCA) plays a vital role in this transition phase. This LCA study uses climate change results and fossil fuel consumptions to study the environmental impacts of a thermal recycling route to recycle and remanufacture CFRP and GFRP wastes into recycled rCFRP and rGFRP composites. Additionally, a comprehensive analysis was performed comparing with the traditional waste management options such as landfill, incineration with energy recovery and feedstock for cement kiln. Overall, the LCA results were favourable for CFRP wastes to be recycled using the thermal recycling route with lower environmental impacts. However, this contradicts GFRP wastes in which using them as feedstock in cement kiln production displayed more reduced environmental impacts than those thermally recycled to substitute virgin composite production.

2021 ◽  
pp. 1587-1600
Juliane da Costa Santos ◽  
Ana Caroline da Costa Santos ◽  
Paul Archbold ◽  
Rogério Francisco Küster Puppi

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4103
Evanthia J. Pappa ◽  
James A. Quinn ◽  
James J. Murray ◽  
James R. Davidson ◽  
Conchúr M. Ó Brádaigh ◽  

In this study, two types of single polymer films have been inserted in a composite laminate to examine their toughening effects on mechanical properties. The first is a thermoplastic polyurethane (PU) film, and the second is an adhesive epoxy film featuring a polyester net. The laminates were manufactured either using a co-curing (CC) process or a secondary bonding (SB) process used for the epoxy film. Mode I and mode II interlaminar fracture toughness were measured for laminates manufactured by both processes and compared with the corresponding reference laminate toughness. A significant increase in both mode I and mode II toughness resulted when introducing a single PU film, approximately 290% and 50%, respectively. Similarly, the epoxy film improved the interlaminar fracture properties; the CC process produced an increase of 175% for mode II toughness, while the SB adhesive film showed an increase of 75% for mode II toughness.

Sign in / Sign up

Export Citation Format

Share Document