Mixed-Mode Fracture of Hybrid Material Bonded Interfaces under Four-Point Bending

2011 ◽  
Vol 24 (2) ◽  
pp. 218-226 ◽  
Author(s):  
Pizhong Qiao ◽  
Fangliang Chen ◽  
Cole S. Hamey ◽  
Jialai Wang
2005 ◽  
Vol 475-479 ◽  
pp. 1329-1332
Author(s):  
Masayuki Tsukada ◽  
Eiichi Sato ◽  
Kazuhiko Kuribayashi

Fracture behavior under multiaxial stress state of polycrystalline alumina was studied from the view point of an artificial crack propagation and fracture from a natural flaw. The former was studied by mixed-mode fracture toughness tests; asymmetric four-point bending and diametral compression techniques were carried out using precracked and notched specimens. The latter was studied by biaxial fracture tests in compression and torsion loading; multiaxial fracture statistics was applied to the measured fracture envelope. The ratio KIIC/KIC obtained from the biaxial tests was higher than that obtained by the mixed-mode fracture toughness tests. It revealed that the fracture from an artificial flaw does not simulate the fracture from a naturall flaw in polycrystalline ceramics.


Author(s):  
Meng Fan ◽  
Yan Jin ◽  
Thomas Wick

AbstractIn this work, we develop a mixed-mode phase-field fracture model employing a parallel-adaptive quasi-monolithic framework. In nature, failure of rocks and rock-like materials is usually accompanied by the propagation of mixed-mode fractures. To address this aspect, some recent studies have incorporated mixed-mode fracture propagation criteria to classical phase-field fracture models, and new energy splitting methods were proposed to split the total crack driving energy into mode-I and mode-II parts. As extension in this work, a splitting method for masonry-like materials is modified and incorporated into the mixed-mode phase-field fracture model. A robust, accurate and efficient parallel-adaptive quasi-monolithic framework serves as basis for the implementation of our new model. Three numerical tests are carried out, and the results of the new model are compared to those of existing models, demonstrating the numerical robustness and physical soundness of the new model. In total, six models are computationally analyzed and compared.


Sign in / Sign up

Export Citation Format

Share Document