polycrystalline alumina
Recently Published Documents


TOTAL DOCUMENTS

371
(FIVE YEARS 11)

H-INDEX

40
(FIVE YEARS 0)

2021 ◽  
Vol 1 (3) ◽  
Author(s):  
Mubashir Mansoor ◽  
Mehya Mansoor ◽  
Maryam Mansoor ◽  
Zuhal Er ◽  
Filiz Çinar Şahin

Birefringence is a major source of difficulty in sintering of transparent polycrystalline alumina ceramics, especially as the grain size exceeds a few hundred nanometers, which ultimately leads to complete opacity, mainly due to scattering of light. Recent studies have made it clear that by application of a strong magnetic field, alumina grains can be aligned along a particular crystallographic orientation, which minimizes scattering due to birefringence, and enhances transparency. Defects that cause spin delocalization are known to induce a paramagnetic behavior in alumina ceramics. Therefore, such defects have become a focal point of research for magnetic field assisted sintering of transparent polycrystalline alumina, in order to reduce the necessary magnetic field strength during production process. In light of recent studies on paramagnetic potentials of transition metal doped alumina, we have applied Spin Polarized Density Functional Theory (SP-DFT) calculations on manganese and chromium doped and co-doped alumina to calculate the magnetic moments, density of states and defect formation energies, which should be expected from this system of dopants, along with their interactions with oxygen vacancies. The results clearly indicate that formation of a point defect comprised of chromium and manganese positioned substitutionally at adjacent aluminum sites, in vicinity of an oxygen vacancy can induce a magnetic moment equivalent to 5 Bohr magnetons (μβ), outperforming previously reported defects. Based on this study we find it likely that chromium and manganese co-doping in alumina can further reduce the required magnetic field strength for production of transparent polycrystalline alumina.


Author(s):  
Hsing-I Hsiang ◽  
Chao-Yi Lee ◽  
Chih-Cheng Chen ◽  
Jun Wang ◽  
Dingyuan Tang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 365
Author(s):  
Seon-Hee Shin ◽  
Hyung-Seog Yu ◽  
Jung-Yul Cha ◽  
Jae-Sung Kwon ◽  
Chung-Ju Hwang

The accurate expression of bracket prescription is important for successful orthodontic treatment. The aim of this study was to evaluate the accuracy of digital scan images of brackets produced by four intraoral scanners (IOSs) when scanning the surface of the dental model attached with different bracket materials. Brackets made from stainless steel, polycrystalline alumina, composite, and composite/stainless steel slot were considered, which have been scanned from four different IOSs (Primescan, Trios, CS3600, and i500). SEM images were used as references. Each bracket axis was set in the reference scan image, and the axis was set identically by superimposing with the IOS image, and then only the brackets were divided and analyzed. One-way analysis of variance (ANOVA) was used to compare the differences. The difference between the manufacturer’s nominal torque and bracket slot base angle was 0.39 in SEM, 1.96 in Primescan, 2.04 in Trios, and 5.21 in CS3600 (p < 0.001). The parallelism, which is the difference between the upper and lower angles of the slot wall, was 0.48 in SEM, 7.00 in Primescan, 5.52 in Trios, 6.34 in CS3600, and 23.74 in i500 (p < 0.001). This study evaluated the accuracy of the bracket only, and it must be admitted that there is some error in recognizing slots through scanning in general.


Author(s):  
P. Fima ◽  
N. Sobczak

Computer-aided development of liquid-assisted metallurgical processes requires reliable basic data for the molten materials, including thermophysical properties such as density, surface tension and viscosity. Cast irons belong to the group of Fe-C alloys of practical importance due to their good technological and utility properties, yet experimental thermophysical data of cast irons in the literature are scarce. In this study, the density and surface tension of three compacted graphite cast iron alloys were measured by the sessile drop method in contact heating mode in the temperature range of 1473 - 1723 K with polycrystalline alumina as a substrate. The drop profile images were recorded both during heating and subsequent cooling regimes. At 1473 K, the density values of the studied compacted graphite irons are between 6.66 and 6.69 g?cm-3, whereas surface tension values are between 1130 and 1510 mN?m-1. The density decreases with increasing temperature, while surface tension dependence on temperature is less obvious. The obtained results are compared to the available literature data and analyzed taking into account chemical interaction of liquid cast irons with the substrate material.


2021 ◽  
Author(s):  
Tsuneaki Matsudaira ◽  
Takafumi Ogawa ◽  
Miyuki Takeuchi ◽  
Naoya Shibata ◽  
Yuichi Ikuhara ◽  
...  

Author(s):  
Seon-Hee Shin ◽  
Hyung-Seog Yu ◽  
Jung-Yul Cha ◽  
Jae-Sung Kwon ◽  
Chung-Ju Hwang

Accurate expression of bracket prescription is important for successful orthodontic treatment. The aim of this study was to evaluate the accuracy of digital scan images of brackets produced by four different intraoral scanners (IOSs) in terms of the height, position, and angle of the bracket slot when scanning the surface of dental model attached with bracket materials made from different composition of materials. Brackets made from stainless steel, polycrystalline alumina, composite and composite/stainless steel slot were considered, which have been scanned from 4 different IOSs (Primescan, Trios, CS3600 and i500). SEM images were used as references. Each bracket axis was set in the reference scan image, and the axis was set identically by superimposing with the IOS image, and then only the brackets were divided and analyzed. The difference between the manufacturer's nominal torque and bracket slot base angle was 0.39 in SEM, 1.96 in Primescan, 2.04 in Trios, and 5.21 in CS3600 (P &lt;0.001). The parallelism, which is the difference between the upper and lower angles of the slot wall, was 0.55 in SEM, 7.55 in Primescan, 6.74 in Trios3, 6.59 in CS3600, and 24.95 in i500 (p &lt;0.001). This study evaluated the accuracy of the bracket only and it must be admitted that there is some error in recognizing slots through scanning in general


2020 ◽  
Vol 1633 ◽  
pp. 012046
Author(s):  
Zhonglei Liu ◽  
Chao Wang ◽  
Zhanying Chen ◽  
Yiming Rong ◽  
Xuekun Li

2019 ◽  
Vol 22 (4) ◽  
pp. 520-527
Author(s):  
Ricardo Sgura ◽  
André Guaraci DeVito Moraes ◽  
Stephane Silva Reis ◽  
Adriana Rios Mafra Ferrari ◽  
Marcello Rubens Barsi Andreeta ◽  
...  

Objective: Despite the increase of all-ceramic prosthesis in dental practice there is no evidence of the possibility of welding these structures if necessary. The objective of this study was to use CO2 laser (?=10.6µm) as a welding agent to fuse dental polycrystalline alumina ceramic. Methods: Ceramic blocks of pre-sintered alumina were sectioned into 20 bars (10.0 x 1.5 x 1.5mm) and sintered to the final cross?section dimension of 1.2 x 1.2mm. The bars were adapted to an LHPG (Laser Heated Pedestal Growth) system device where the bars could be fixed in pairs and have their ends irradiated with CO2 laser to fusion. The ring-shaped laser beam (300 µm thickness) was directed with the aid of mirrors to reach samples’ ends. The laser was continuously applied (40W nominal power, 5 seconds). After welding, the samples were analyzed in stereomicroscope and SEM. A diffraction analysis was carried out with one sample. Results: The ceramic bars were successfully fused, but some of them showed some shape distortion in the fusion zone. The aspect of the fused alumina differed in color and translucency from the original sintered material. SEM evidenced the presence of porosity and voids in the center of the fusion zone. X-ray diffraction pointed to a reduction in crystallite size by two to four times in the welded region of samples. Conclusions: This study points to CO2 laser as a possible welding agent to polycrystalline alumina dental ceramic. Porosity observed in the molten zone gives cause for concern regarding weld resistance.


Author(s):  
Robert F. Cook ◽  
Chris A. Michaels

Stress measurements in single-crystal and polycrystalline alumina are revisited using a recently developed optical fluorescence energy shift method. The method simultaneously utilizes the R1 and R2 Cr-related ruby line shifts in alumina to determine two components of the stress tensor in crystallographic coordinates, independent of the intended or assumed stress state. Measurements from a range of experimental conditions, including high-pressure, shock, quasi-static, and bulk polycrystals containing thermal expansion anisotropy effects, are analyzed. In many cases, the new analysis suggests stress states and stress magnitudes significantly different from those inferred previously, particularly for shock experiments. An implication is that atomistic models relating stress state to fluorescence shift require significant refinement for use in materials-based residual stress distribution analyses. Conversely, the earliest measurements of fluorescence in polycrystalline alumina are shown to be consistent with recent detailed measurements of stress equilibrium and dispersion.


Sign in / Sign up

Export Citation Format

Share Document