Computational Fluid Dynamics and Thermal Analysis to Estimate the Skin Temperature of Cockpit Surface in Various Flight Profiles

2015 ◽  
Vol 28 (1) ◽  
pp. 04014056 ◽  
Author(s):  
Paresh Gupta ◽  
S. P. S. Rajput
Author(s):  
John Fernandes ◽  
Saeed Ghalambor ◽  
Akhil Docca ◽  
Chris Aldham ◽  
Dereje Agonafer ◽  
...  

The objective of the study is to improve on performance of the current liquid cooling solution for a Multi-Chip Module (MCM) through design of a chip-scale cold plate with quick and accurate thermal analysis. This can be achieved through application of Flow Network Modeling (FNM) and Computational Fluid Dynamics (CFD) in an interactive manner. Thermal analysis of the baseline cold plate design is performed using CFD to determine initial improvement in performance as compared to the original solution, in terms of thermal resistance and pumping power. Fluid flow through the solution is modeled using FNM and verified with results from the CFD analysis. In addition, CFD is employed to generate flow impedance curves of non-standard components within the cold plate, which are used as input for the Hardy Cross method in FNM. Using the verified flow network model, design parameters of different components in the cold plate are modified to promote uniform flow distribution to each active region in the chip-scale solution. Analysis of the resultant design using CFD determines additional improvement in performance over the original solution, if available. Thus, through complementary application of FNM and CFD, a robust cold plate can be designed without requiring expensive fabrication of prototypes and with minimal computational time and resources.


Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 804
Author(s):  
Sudalai Suresh Pungaiah ◽  
Chidambara Kuttalam Kailasanathan

Automotive heat removal levels are of high importance for maximizing fuel consumption. Current radiator designs are constrained by air-side impedance, and a large front field must meet the cooling requirements. The enormous demand for powerful engines in smaller hood areas has caused a lack of heat dissipation in the vehicle radiators. As a prediction, exceptional radiators are modest enough to understand coolness and demonstrate great sensitivity to cooling capacity. The working parameters of the nano-coated tubes are studied using Computational Fluid Dynamics (CFD) and Taguchi methods in this article. The CFD and Taguchi methods are used for the design of experiments to analyse the impact of nano-coated radiator parameters and the parameters having a significant impact on the efficiency of the radiator. The CFD and Taguchi methodology studies show that all of the above-mentioned parameters contribute equally to the rate of heat transfer, effectiveness, and overall heat transfer coefficient of the nanocoated radiator tubes. Experimental findings are examined to assess the adequacy of the proposed method. In this study, the coolant fluid was transmitted at three different mass flow rates, at three different coating thicknesses, and coated on the top surface of the radiator tubes. Thermal analysis is performed for three temperatures as heat input conditioning for CFD. The most important parameter for nanocoated radiator tubes is the orthogonal array, followed by the Signal-to-Noise Ratio (SNRA) and the variance analysis (ANOVA). A proper orthogonal array is then selected and tests are carried out. The findings of ANOVA showed 95% confidence and were confirmed in the most significant parameters. The optimal values of the parameters are obtained with the help of the graphs.


Author(s):  
Gabriel C. Nogueira ◽  
Leonardo H. Medeiros ◽  
Micael M. Oliveira ◽  
Nórton D. Barth ◽  
Vitor C. Bender ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document