Stagnation-Point Flow by an Exponentially Stretching Sheet in the Presence of Viscous Dissipation and Thermal Radiation

2016 ◽  
Vol 29 (2) ◽  
pp. 04015046 ◽  
Author(s):  
Z. Iqbal ◽  
M. Qasim ◽  
M. Awais ◽  
T. Hayat ◽  
S. Asghar
2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
A. Malvandi ◽  
F. Hedayati ◽  
G. Domairry

This paper deals with the steady two-dimensional stagnation point flow of nanofluid toward an exponentially stretching sheet with nonuniform heat generation/absorption. The employed model for nanofluid includes two-component four-equation nonhomogeneous equilibrium model that incorporates the effects of Brownian diffusion and thermophoresis simultaneously. The basic partial boundary layer equations have been reduced to a two-point boundary value problem via similarity variables and solved analytically via HAM. Effects of governing parameters such as heat generation/absorption λ, stretching parameter ε, thermophoresis , Lewis number Le, Brownian motion , and Prandtl number Pr on heat transfer and concentration rates are investigated. The obtained results indicate that in contrast with heat transfer rate, concentration rate is very sensitive to the abovementioned parameters. Also, in the case of heat generation , despite concentration rate, heat transfer rate decreases. Moreover, increasing in stretching parameter leads to a gentle rise in both heat transfer and concentration rates.


Sign in / Sign up

Export Citation Format

Share Document