Halo Orbit Maintenance around L1 Point of the Sun-Earth System Using Optimal Control and Lyapunov Stability Theory

2022 ◽  
Vol 35 (1) ◽  
pp. 04021107
Author(s):  
Vivek Ramteke ◽  
Shashi Ranjan Kumar
Author(s):  
Heli Gao ◽  
Mou Chen

This paper studies the fixed-time disturbance estimate and tracking control for two-link manipulators subjected to external disturbance. A fixed-time extended-state disturbance observer (FxTESDO) is proposed by improving the extended state observer. Also, a fixed-time inverse dynamics tracking control (FxTIDTC) scheme based on the FxTESDO is given for two-link manipulators. The fixed-time convergence of the FxTESDO and FxTIDTC is proved by the Lyapunov stability theory and with the aid of the bi-limit homogeneous technique. Numerical simulations are employed to illustrate the effectiveness of the proposed FxTIDTC.


1992 ◽  
Vol 5 (3) ◽  
pp. 275-281 ◽  
Author(s):  
Billur Kaymakçalan

By use of the necessary calculus and the fundamental existence theory for dynamic systems on time scales, in this paper, we develop Lyapunov's second method in the framework of general comparison principle so that one can cover and include several stability results for both types of equations at the same time.


2013 ◽  
Vol 401-403 ◽  
pp. 1657-1660
Author(s):  
Bin Zhou ◽  
Xiang Wang ◽  
Yu Gao ◽  
Shao Cheng Qu

An adaptive controller with adaptive rate is presented to synchronize two chaos systems and to apply to secure communication. Based on Lyapunov stability theory, a sufficient condition and adaptive control parameters are obtained. Finally, the simulation with synchronization and secure communication is given to show the effectiveness of the proposed method. Keywords: adaptive; synchronization; observer; controller.


2014 ◽  
Vol 620 ◽  
pp. 321-329
Author(s):  
Guang Rui Liu ◽  
Wen Bo Zhou ◽  
Rong Fu Liu

In order to study the elastic motion stability of flexible manipulator arm , to compute the maximum dynamic allowable payload , the partial differential equation of elastic motion of the flexible manipulator arm is solved using the method of Laplace transformation , the dynamic model of flexible manipulator arm carried addition mass on its end position is established ,simplified and truncated using Lagrange equation . the state space expression is established with the state variable and control input and output variable designated , the elastic motion stability rule is built upon and simplified using Lyapunov stability theory . The influence of the end position addition mass and articulation rotational inertia of flexible manipulator arm on its elastic motion stability is analyzed using the stability rule , and the dynamic maximum allowable payload of flexible manipulator arm on its end position is computed in order to guarantee its elastic motion stability . this study is important to the design of robot mechanical manipulator and corresponding drive control system .


2014 ◽  
Vol 24 (3) ◽  
pp. 257-270 ◽  
Author(s):  
Bohui Wen ◽  
Mo Zhao ◽  
Fanyu Meng

Abstract This paper investigates the pinning synchronization of two general complex dynamical networks with lag. The coupling configuration matrices in the two networks are not need to be symmetric or irreducible. Several convenient and useful criteria for lag synchronization are obtained based on the lemma of Schur complement and the Lyapunov stability theory. Especially, the minimum number of controllers in pinning control can be easily obtained. At last, numerical simulations are provided to verify the effectiveness of the criteria


2013 ◽  
Vol 2013 ◽  
pp. 1-13
Author(s):  
Yi Zuo ◽  
Xinsong Yang

Asymptotic synchronization for a class of coupled networks with nondelayed and delayed couplings is investigated. A distinct feature of the network is that all the dynamical nodes are affected by uncertain nonlinear nonidentical perturbations. In order to synchronize the network onto a given isolate trajectory, a novel adaptive controller is designed to overcome the effects of the nonidentical uncertain nonlinear perturbations. The designed controller has better robustness than classical adaptive controller, since it can realize the synchronization goal whether the nodes have these perturbations or not. Based on the Lyapunov stability theory and the Barbalat lemma, sufficient conditions guaranteeing the asymptotic synchronization of the coupled network are derived. Two examples with numerical simulations are given to illustrate the effectiveness of the theoretical results. Simulations also demonstrate that our adaptive controller has better robustness than existing ones.


Sign in / Sign up

Export Citation Format

Share Document