Microstructural Modeling of Early-Age Creep in Hydrating Cement Paste

2016 ◽  
Vol 142 (11) ◽  
pp. 04016086 ◽  
Author(s):  
Quang Huy Do ◽  
Shashank Bishnoi ◽  
Karen L. Scrivener
2021 ◽  
Author(s):  
Lenka Scheinherrová ◽  
Vojtěch Pommer ◽  
Eva Vejmelková ◽  
Robert Černý
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3515
Author(s):  
Weikang Wang ◽  
Xuanchun Wei ◽  
Xinhua Cai ◽  
Hongyang Deng ◽  
Bokang Li

: The early-age carbonation curing technique is an effective way to improve the performance of cement-based materials and reduce their carbon footprint. This work investigates the early mechanical properties and microstructure of calcium sulfoaluminate (CSA) cement specimens under early-age carbonation curing, considering five factors: briquetting pressure, water–binder (w/b) ratio, starting point of carbonation curing, carbonation curing time, and carbonation curing pressure. The carbonization process and performance enhancement mechanism of CSA cement are analyzed by mercury intrusion porosimetry (MIP), thermogravimetry and derivative thermogravimetry (TG-DTG) analysis, X-ray diffraction (XRD), and scanning electron microscope (SEM). The results show that early-age carbonation curing can accelerate the hardening speed of CSA cement paste, reduce the cumulative porosity of the cement paste, refine the pore diameter distribution, and make the pore diameter distribution more uniform, thus greatly improving the early compressive strength of the paste. The most favorable w/b ratio for the carbonization reaction of CSA cement paste is between 0.15 and 0.2; the most suitable carbonation curing starting time point is 4 h after initial hydration; the carbonation curing pressure should be between 3 and 4 bar; and the most appropriate time for carbonation curing is between 6 and 12 h.


2021 ◽  
Vol 285 ◽  
pp. 122949
Author(s):  
Da-heng Wang ◽  
Xiao Yao ◽  
Tao Yang ◽  
Wen-rui Xiang ◽  
Ying-tao Feng ◽  
...  

2012 ◽  
Vol 29 ◽  
pp. 496-503 ◽  
Author(s):  
Paméla F. Faure ◽  
Sabine Caré ◽  
Julie Magat ◽  
Thierry Chaussadent
Keyword(s):  

2019 ◽  
Vol 116 ◽  
pp. 191-201 ◽  
Author(s):  
Mateusz Wyrzykowski ◽  
Karen Scrivener ◽  
Pietro Lura

2014 ◽  
Vol 584-586 ◽  
pp. 894-898
Author(s):  
Ping Zhang ◽  
Guan Guo Liu ◽  
Chao Ming Pang ◽  
Bing Du ◽  
Hong Gen Qin

The X ray computed tomography (X-CT) was applied to test the cracking resistance of cement paste, and the hydration process was monitored to study the effect of fly ash on the early age cracking performance. The results showed that the hydration heat reduced with the increase of fly ash under the same water-cement ratio. Within 24h, the porosity increased with time. The addition of fly ash increased the proportion of large holes and then changed the internal stress state. Using X-CT test method and by comparing the number of cracks, the sample with 20% FA was found to have the most serious cracks, whereas the sample with 30% FA had the best crack resistance.


2021 ◽  
Author(s):  
Jiayin Tao ◽  
Rita Maria Ghantous ◽  
Ming Jin ◽  
Jason Weiss

Sign in / Sign up

Export Citation Format

Share Document