Modeling a Variable-Geometry Turbocharged Diesel Engine under Steady-State and Transient Conditions

2018 ◽  
Vol 144 (3) ◽  
pp. 04018017 ◽  
Author(s):  
Evangelos G. Giakoumis ◽  
Vasileios Tziolas
2003 ◽  
Vol 125 (2) ◽  
pp. 450-457 ◽  
Author(s):  
D. N. Assanis ◽  
Z. S. Filipi ◽  
S. B. Fiveland ◽  
M. Syrimis

Available correlations for the ignition delay in pulsating, turbulent, two-phase, reacting mixtures found in a diesel engine often have limited predictive ability, especially under transient conditions. This study focuses on the development of an ignition delay correlation, based on engine data, which is suitable for predictions under both steady-state and transient conditions. Ignition delay measurements were taken on a heavy-duty diesel engine across the engine speed/load spectrum, under steady-state and transient operation. The dynamic start of injection was calculated by using a skip-fire technique to determine the dynamic needle lift pressure from a measured injection pressure profile. The dynamic start of combustion was determined from the second derivative of measured cylinder pressure. The inferred ignition delay measurements were correlated using a modified Arrhenius expression to account for variations in fuel/air composition during transients. The correlation has been compared against a number of available correlations under steady-state conditions. In addition, comparisons between measurements and predictions under transient conditions are made using the extended thermodynamic simulation framework of Assanis and Heywood. It is concluded that the proposed correlation provides better predictive capability under both steady-state and transient operation.


2021 ◽  
Vol 7 ◽  
Author(s):  
Praveen Kumar ◽  
Yu Zhang ◽  
Michael Traver ◽  
John Watson

The simultaneous application of new low-NOx emissions standards and greenhouse gas (GHG) rules has placed great pressure on the commercial vehicle industry and has driven demand for innovative solutions. One potential solution, gasoline compression ignition (GCI), utilizes gasoline’s lower reactivity to promote partially premixed combustion and extract efficiency while reducing the PM-NOx trade-off curve. Gasoline’s volatility allows for the use of higher levels of exhaust gas recirculation (EGR), a key enabler of GCI combustion. In order to deliver higher levels of EGR while maintaining sufficient boost pressure, a tailored and efficient air-handling system is critical. This work presents the analysis-led development of a low-NOx GCI air-handling system including both turbocharger matching and EGR configuration for a prototype heavy-duty GCI engine based on a model year 2013 Cummins ISX diesel engine using low octane gasoline (RON80). In the analysis-driven development process, a 1D engine system-level analysis was closely coupled with closed-cycle 3D CFD GCI combustion development. Three different boost systems were investigated using a validated 1D engine model: 1) the production turbocharger; 2) an off-the-shelf single-stage waste-gate turbocharger; 3) a prototype single-stage variable geometry turbocharger. For each boost system, three EGR configurations were evaluated: 1) a high-pressure EGR route; 2) a low-pressure EGR route; 3) a dual-loop EGR route. The air-handling system performance was first investigated over five steady-state engine operating conditions extracted from the ramped modal cycle supplemental emissions test. Then, through cosimulation using a Simulink-based engine controls model, the best performing candidates under transient operation through the Heavy-Duty Federal Test Procedure certification cycle were identified. The production turbocharger, designed for 4–6 g/kWh engine-out NOx, suffered from low combined turbocharger efficiency under the low-NOx GCI thermal boundary conditions. The prototype 1-Stage variable geometry turbocharger, when used with a high-pressure EGR configuration, demonstrated higher combined efficiencies, while the waste-gate turbocharger showed the best results when used with a dual-loop EGR system. All low-pressure only EGR configurations were found to incur additional pumping penalties due to the need for a back pressure valve to drive sufficient EGR levels. In the transient test cycle analysis, the single-stage high-pressure EGR system was capable of delivering the target boost and EGR, while the off-the-shelf waste-gate turbocharger, with its higher mass inertia, showed slower turbine response and a resulting lag in boost response. Unsurprisingly, the dual-loop EGR system also suffered from delays in EGR delivery during engine acceleration. In summary, the prototype single-stage variable geometry turbocharger with a high-pressure EGR system produced the best performance over both the steady-state and transient engine cycles and was identified as the best candidate for the prototype low-NOx heavy-duty GCI engine.


2017 ◽  
Vol 23 (3) ◽  
pp. 297-309 ◽  
Author(s):  
Rakesh Mishra ◽  
Syed Mohammad Saad

Purpose Use of fossil fuels in automotive sector is one of the primary causes of greenhouse emissions. The automotive engines need to perform at their best efficiency point to limit these emissions. Most of the quality indicators in this regard are based on near steady state global operational characteristics for engines without considering local performance. In the present study, extensive numerical simulations have been carried out covering a wide range of steady state and transient operating conditions to quantify interaction of turbocharger with engines through turbo lag phenomena which may cause increased emissions during the load change conditions. Furthermore possible innovations have been explored to minimize turbo lag phenomena. The paper aims to discuss these issues. Design/methodology/approach In this paper quality indicators have been developed to quantify the performance of turbocharged diesel engine under the transient event of rapid change in fueling rate which has been rarely investigated. The rate of fueling is changed from 40 mm3/injection to 52 mm3/injection at 1,000 rpm engine speed which corresponds to normal operating condition. To improve quality of transient response, torque assistance method and reduction of inertia of compressor wheel have been used. Parametric study has been undertaken to analyze the quality indicators such as outlet pressure of the compressor and the compressor speed. The turbo lag is quantified to obtain the close to optimal transient response of turbocharged diesel engine. Findings It has been shown that, with torque assist the transient response of the internal combustion engine is significantly improved. On the other hand, marginal improvement in transient response is observed by the reduction in inertia of the compressor wheel. Research limitations/implications The findings indicate that turbo lag can be minimized by providing torque assistance by active and passive means. Practical implications The developed methods can be used in practice for efficient operation of vehicles. Social implications The work carried out in the paper provides a way to minimize harmful emissions. Originality/value The quality indicators developed provide a quantitative measure of turbo lag phenomena and address the above mentioned problems.


Sign in / Sign up

Export Citation Format

Share Document