Suitability Assessment of Using Lime Sludge for Subgrade Soil Stabilization

Author(s):  
Haluk Sinan Coban ◽  
Bora Cetin

Soil stabilization with liquid asphalt is considered as a sustainable step towards roadway construction on problematic subgrade soil, there are no requirements to import good quality materials or to implement energy consumption, but to mix the readily available soil with liquid asphalt through the cold mix technique. In this work, expansive soil obtained from Manali, Chennai was mixed with asphalt emulsion, lime, and combinations of lime and asphalt emulsion (combined stabilization) and tested in the laboratory for California bearing ratio in dry and soaked conditions. Field trial sections have been prepared with the same combinations and subjected to plate bearing test. The influence of combined stabilization on the structural properties in terms of load bearing capacity and deformation under both testing techniques have been monitored and analyzed. It was concluded that 17% of asphalt emulsion and 6% lime can furnish a suitable combined stabilization process from the structural properties requirements point of view.


2020 ◽  
Author(s):  
Ali Behnood ◽  
Jan Olek

The loss of functionality and the development of distress in concrete pavements is often attributable to the poor subbase and subgrade conditions and/or loss of support due to the development of the voids underneath the slab. Subgrade soil stabilization can be used as an effective approach to restore the functionality of the subgrades in patching projects. This research had two main objectives: (1) identifying the best practices for soil stabilization of the existing subgrade during pavement patching operations and (2) identifying and developing new, modified grouting materials for slab stabilization and undersealing. Various stabilization scenarios were tested and showed improved performance of the subgrade layer. The use of geotextile along with aggregate course was found to significantly reduce the settlement. Non-removable flowable fill was also found to significantly reduce the subgrade settlement. Cement-treated aggregate and lean concrete provided the best performance, as they prevented formation of any noticeable settlement in the underlying subgrade.


Author(s):  
C. Ayyavu ◽  
S.R. Iyengar ◽  
H.S. Bazzi ◽  
H.J.H.M. Hanley ◽  
Dallas N. Little

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Partab Rai ◽  
Wenge Qiu ◽  
Huafu Pei ◽  
Jihui Chen ◽  
Xufeng Ai ◽  
...  

The effectiveness of the use of waste fly ash (FA) and cement (OPC) in the stabilization of subgrade soils and the reasons likely to influence the degree of stabilization were investigated. Incorporating waste fly ash (FA) and cement (OPC) as additives leads to significant environmental and economic contributions to soil stabilization. This study involves laboratory tests to obtain the Atterberg limit, free swell index (FSI), the unconfined compressive strength (UCS), the California bearing ratio (CBR), and the scanning electron microscope (SEM). The test results for the subgrade soil illustrate that the Atterberg limit, plasticity index, and free swell index are decreasing with the addition of different proportions of fly ash and cement, i.e., 0%, 5%, 10%, 15%, and 20% and 0%, 2%, 4%, 6%, and 8%, respectively. The CBR value of untreated soil is 2.91%, while the best CBR value of fly ash and cement mixture treated soil is 10.12% (20% FA+8% OPC), which increases 71.34% from the initial value. The UCS of untreated soil is 86.88 kPa and treated soil with fly ash and cement attains a maximum value of 167.75 kPa (20% FA+8% OPC), i.e., increases by 48.20% from the initial value. The tests result show that the stability of a subgrade soil can be improved by adding fly ash and cement. While effectiveness and usability of waste FA and cement are cost-effective and environmentally friendly alternatives to expansive soil for pavement and any other foundation work in the future.


2016 ◽  
Vol 5 (1) ◽  
pp. 38-52 ◽  
Author(s):  
Antonia Athanasopoulou

Abstract Very often, pavements constructed in an economical manner or matching surface elevations of adjacent lanes cannot be designed for the soil conditions of the existing subgrade. Therefore, there is a need to stabilize the soil with an appropriate chemical substance in order to increase its strength to a satisfactory level. For the enhancement of subgrade soil strength characteristics, lime and cement are the most commonly used stabilizers. An experimental program was directed to the evaluation of a clayey soil and its mixtures with different cement contents performing tests on the index properties, the moisture-density relation, the unconfined compressive strength, and linear shrinkage. There is a definite improvement in strength. The time interval used to cure the prepared specimens affected positively both strength and plasticity features of the mixtures. A comparison with mixtures of the same soil with lime has been made, because of the wide use of lime in clay soil stabilization projects.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Kashif Ali Khan ◽  
Hassan Nasir ◽  
Muhammad Alam ◽  
Sajjad Wali Khan ◽  
Izhar Ahmad

To improve the essential properties of soil, stabilization proved to be more significant in overcoming the limitations of the desired soil. The improvement of soil properties will not only enhance the mechanical properties rather it will help in preventing dust and erosion formation. In this study, a set of tests are carried out to examine the strength characteristics of subgrade soil blended with ethylene vinyl acetate (EVA) and cement. EVA contributes almost 14% mass to the global waste, requiring bigger lands for its disposal; therefore, in order to promote a green environment and to bring an economical waste management system, an investigation of using EVA in the soil stabilization techniques is attempted. Soil specimens are investigated with and without the inclusion of EVA and cement. For this purpose, EVA was mixed with soil at a percentage level of 3, 6, and 9% whereas the cement was mixed at a percentage level of 4, 6, and 8%. To examine the combined effects of EVA and cement, the specimens were tested for compaction, direct shear, unconfined compression, triaxial, XRD, porosity, and permeability tests. All the soil samples were cured at 7, 14, and 28 days followed by the standard testing procedure. When cement was added to soil up to 4, 6, and 8% at a constant level of EVA (9%), cohesion was increased by 37, 42, and 46% while the unconfined compressive strength (UCS) was increased by 76, 81, and 84% for the same mixes. From the statistics, it clearly evident that the percentage increase caused by the addition of even 3% EVA to the cemented and uncemented soil specimens is very significant regarding cohesion and compressive strength. Porosity and permeability of soil containing both EVA (9%) and cement (8%) were decreased by 37% and 77%, respectively.


Sign in / Sign up

Export Citation Format

Share Document