treated soil
Recently Published Documents


TOTAL DOCUMENTS

567
(FIVE YEARS 137)

H-INDEX

35
(FIVE YEARS 5)

Geotechnics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 573-587
Author(s):  
Sin Mei Lim ◽  
Linqiao He ◽  
Siang Huat Goh ◽  
Fook Hou Lee

Although there has been a substantial body of research on the chemical stabilization of sewage sludge, most of these results are project-specific and relate mainly to the use of new binders and sewage sludge from specific sources. In this sense, much of the work to date is context-specific. At present, there is still no general framework for estimating the strength of the chemically treated sludge. This paper proposes one such general framework, based on data from some recent studies. An in-depth re-interpretation of the data is first conducted, leading to the observation that sludge, which has coarse, hard particulate inclusions, such as sand, premixed into it, gives significantly higher strength. This was attributed to the hard coarse particles that lower the void ratio of treated soil, are much less susceptible to volume collapse under pressure, and contribute to the strength through frictional contacts and interlocking. This motivates the postulation of a general framework, based on the premise that coarse, hard particulate inclusions in the sludge which do not react with the binders can nonetheless contribute to the strength of the treated soil. The overall void ratio, defined as the volume of voids in the cementitious matrix normalised by the overall volume, is proposed as a parameter for quantifying the combined effect of the coarse particulate inclusions and the cementitious matrix. The binder-sludge ratio is another parameter which quantifies the strength of the cementitious matrix, excluding the hard particulate inclusions. Back-analysis of the data suggests that the significance of the binder-sludge ratio may diminish as the content of hard particulate inclusions increases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Zhan ◽  
Ning Yan ◽  
Xinyue Miao ◽  
Qiong Li ◽  
Changbao Chen

Reductive soil disinfestation (RSD) and soil fumigant chloropicrin (SFC) are two common agricultural strategies for the elimination of soil-borne pathogens. However, the differences in soil environmental factors, soil bacterial microbiome, and root performance between SFC and RSD are poorly understood. In this study, three soil treatments, untreated control (CK), SFC with 0.5 t⋅ha–1 chloropicrin, and RSD with 15 t⋅ha–1 animal feces, were compared. We evaluated their effects on soil environmental factors, bacterial community structure, and root activity using chemical analysis and high-throughput sequencing. RSD treatment improved soil composition structure, bacterial diversity, and root performance to a greater extent. Carbon source utilization preference and bacterial community structure were strikingly altered by SFC and RSD practices. Bacterial richness, diversity, and evenness were notably lowered in the SFC- and RSD-treated soil compared with the CK-treated soil. However, RSD-treated soil harbored distinct unique and core microbiomes that were composed of more abundant and diverse potentially disease-suppressive and organic-decomposable agents. Also, soil bacterial diversity and composition were closely related to soil physicochemical properties and enzyme activity, of which pH, available Na (ANa), available Mg (AMg), available Mn (AMn), total Na (TNa), total Ca (TCa), total Cu (TCu), total Sr (TSr), urease (S-UE), acid phosphatase (S-ACP), and sucrase (S-SC) were the main drivers. Moreover, RSD treatment also significantly increased ginseng root activity. Collectively, these results suggest that RSD practices could considerably restore soil nutrient structure and bacterial diversity and improve root performance, which can be applied as a potential agricultural practice for the development of disease-suppressive soil.


2021 ◽  
Vol 1 ◽  
pp. 100007
Author(s):  
Kennedy C. Onyelowe ◽  
Ifeyinwa I. Obianyo ◽  
Azikiwe P. Onwualu ◽  
Michael E. Onyia ◽  
Chima Moses

2021 ◽  
pp. 130267
Author(s):  
Ma Qianqian ◽  
Fasih Ullah Haider ◽  
Muhammad Farooq ◽  
Muhammad Adeel ◽  
Noman Shakoor ◽  
...  

2021 ◽  
Author(s):  
Rasoul Alipour

Abstract Existing problematic sub-layers in mixing technologies are a challenge, and for the first time, the effects of salt sub-layers in mass mixing technology have been investigated in this study for sandy salt in the southwest of Iran. This paper discusses the influence of adding various cement contents, Aw, and imposing different preloading values on the salty sand soil. First, salt and sand samples were dried, then, 90 % sand was mixed with 10% salt. After that, 30 % water was mixed thoroughly with the mixture of salty sand to obtain slurries. Cement slurry at a water-cement ratio (w/c) of 0.6 was then added to the sample and thoroughly mixed. The amount of cement in a slurry form that was added to the salty soil was 2, 4, 6, 8, and 10% by mass of dry soil. Each treated soil preloaded by 0, 9, and 45 kPa. After 120 days, the unconfined compressive strength of the sample was determined. Furthermore, by Scanning Electronic Microscope, SEM, the microstructures of treated samples were analyzed. At the end Unconfined Compression Strength, UCS, test results normalized to the non-preloaded treated soil. By increasing cement content, the effect of preloading in increasing UCS will decrease. In the SEM images for Aw=2%, the effect of preloading indicates porous shape for non-preloaded samples. Vice versa by Aw=8%, porous shape in the SEM images will disappear. In the end, treatability studies of pure salt in the thick layer have been investigated.


2021 ◽  
Vol 11 (22) ◽  
pp. 10956
Author(s):  
Jing Dong ◽  
Qi Sun ◽  
Xue Zhang ◽  
Yuan Zhou ◽  
Longchao Xia ◽  
...  

In China, arable soils contaminated with cadmium (Cd) threaten human health. Ferric chloride (FeCl3) is a highly efficient agent that can remove Cd from contaminated soils. However, it is unknown whether FeCl3 damages the soil structure and consequently affects crop growth. In this study, we investigated the impacts of Cd extraction by FeCl3 on the structure of a paddy soil on the basis of comparisons of control (without washing agents) and hydrochloric acid (HCl) treatments. According to our results, the removal efficiency increased with the decrease in soil initial pH, as adjusted by FeCl3. However, the low pH of 2.0 caused a partial loss of soil mineral components, with an Al release of 4.4% in the FeCl3-treated soil versus 1.3% in the HCl-treated soil. In contrast, the amount of released Al was less than 0.2% in the control and in the FeCl3 treatments with initial pH values of 3.0 and 4.0. The washing agents caused soil TOC loss of 27.1%, 17.5%, and 2.76% in the pH 2.0, 3.0, and 4.0 FeCl3 treatments, compared with 15.5% in the initial pH 2.0 HCl treatment. The use of FeCl3 represents an optimum tradeoff between removal efficiency and the loss of soil components to restore Cd-polluted soils by adjusting the initial pH to 3.0 with the addition of FeCl3. Under this condition, the amount of Al loss was less than 0.2%, and the extraction efficiency reached 40.3%, compared to an efficiency of 39.7% with HCl at an initial pH of 2.0. In conclusion, FeCl3 could effectively remove Cd from contaminated soil.


2021 ◽  
Vol 11 (22) ◽  
pp. 10817
Author(s):  
Ahmed Hassan Saad ◽  
Haslinda Nahazanan ◽  
Zainuddin Bin Md Yusoff ◽  
Muskhazli Mustafa ◽  
Mohamed Hamdy Elseknidy ◽  
...  

Marine clay soils are problematic soils in the construction industry when they are subjected to construction loads. When these soils are loaded, they lose their structure. This leads to the soil being unable to withstand loads of any magnitude without exhibiting significant, permanent deformations. In order to stabilize the marine soil, new methods for soil improvement were built upon biogrouting by incorporating physical, biological and chemical treatments into the soil. However, the biggest challenge of this method is the bacteria migration through the soil medium. To overcome this issue, the electrokinetic phenomenon can be utilized alongside biogrouting to prevent the bacteria migration. In this regard, the present study applied electrobiogrouting stabilization to investigate the improvement of acidic marine clay soil with a pH of 3.69. To accomplish this, two large-scale physical models with dimensions of 500 × 300 × 1200 mm were fabricated to examine the influence of two different treated distances between the inlet and outlet—450 mm (D45) and 600 mm (D60)—on the stability of the treated soil. It was observed that the shear strength of the treated soil improved significantly. The shear strength at the D45 treated distance increased from 3.65 kPa (untreated soil) to 28.14 kPa (treated soil). However, the strength increased by increasing the treated distance. In addition, compressibility and soil electrical conductivity were reduced significantly, and the Atterberg limits were significantly enhanced from OH to OL. The reasons for the enhancement of treated soil were the formation of CaCO3, which filled the soil voids, and that the water content was reduced. To address issues with marine clay soil, this study aims to minimize the high cost of a special foundation system and the use of non-environmentally friendly materials such as calcium-based binders, aside from the reduction of deformations caused by loading. The findings of this study can be used for acidic soils and the improvement of soil’s geotechnical behavior in general.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1132
Author(s):  
Cheng Huang ◽  
Xiuyun Sun ◽  
Lianjun Wang ◽  
Paul Storer ◽  
Kadambot H. M. Siddique ◽  
...  

The co-application of biochar and fertiliser has emerged as a strategy for improving soil quality and crop growth; however, the impact of the type of fertiliser added with biochar to the soil on leaching and retention of nutrients is not well studied. In this study, a leaching experiment was undertaken using a series of column lysimeters incorporating a wheat straw biochar (WSB) and two fertiliser types—chemical fertiliser (CF), or rock mineral fertiliser (MF). The results showed that CF and MF leached a similar amount of NH4+ with or without WSB, but the NO3– leaching occurred from CF-treated soil which was decreased by CF + WSB application. In contrast, NO3– leaching was not affected by WSB in MF-treated soil. Both CF and MF with or without WSB increased the cumulative leaching of P and K. Nevertheless, WSB application increased soil P and K contents after leaching, which was attributed to intrinsic nutrient release from biochar. Shoot growth and P and K uptake also increased with biochar amendment, whereas root growth and N uptake did not change. Therefore, the results highlight that biochar addition can improve nutrient retention and plant growth by reducing nutrient leaching, mainly dependent on biochar and fertiliser type combination used. It suggests that the adsorption properties of biochar for nutrient retention and subsequent release need to know before their broad application to soils as amendments.


Sign in / Sign up

Export Citation Format

Share Document