Effects of Soil–Structure Interaction on Dynamic Response of Framed Machine Foundation Resting on Raft and Piles

Author(s):  
Karmegam Rajkumar ◽  
Ramanathan Ayothiraman ◽  
Vasant A. Matsagar
2011 ◽  
Vol 2011 ◽  
pp. 1-23 ◽  
Author(s):  
Sanaz Mahmoudpour ◽  
Reza Attarnejad ◽  
Cambyse Behnia

Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite element method and scaled boundary finite element method is applied. Finite element method is used to analyze the structure, and scaled boundary finite element method is applied in the analysis of unbounded soil region. Due to analytical solution in the radial direction, the radiation condition is satisfied exactly. The material behavior of soil and structure is assumed to be linear. The soil region is considered as a homogeneous half-space. The analysis is performed in time domain. A computer program is prepared to analyze the soil-structure system. Comparing the results with those in literature shows the exactness and competency of the proposed method.


2019 ◽  
Vol 19 (09) ◽  
pp. 1950105
Author(s):  
Gonzalo Barrios ◽  
Vinuka Nanayakkara ◽  
Pramodya De Alwis ◽  
Nawawi Chouw

In conventional seismic design, the structure is often assumed to be fixed at the base. However, this assumption does not reflect reality. Furthermore, if the structure has close neighbors, the adjacent structures will alter the response of the structure considered. Investigations on soil–structure interaction and structure–soil–structure interaction have been performed mainly using numerical models. The present work addresses the dynamic response of adjacent single-degree-of-freedom models on a laminar box filled with sand. Impulse loads and simulated ground motions were applied. The standalone condition was also studied as a reference case. Models with different fundamental frequencies and slenderness were considered. Results from the impulse tests showed that the top displacement of the models with an adjacent structure was reduced compared with that of the standalone case. Changes in the fundamental frequency of the models due to the presence of an adjacent model were also observed. Results from ground motions showed amplification of the maximum acceleration and the top displacement of the models when both structures have a similar fundamental frequency.


1999 ◽  
Vol 15 (3) ◽  
pp. 117-126
Author(s):  
Cheng-Hsing Chen ◽  
Shuh-Hua Yang

AbstractThis paper uses a simple model, the lumped single-degree-of-freedom system on rigid mat foundation, to investigate the effects of soil-structure interaction on the dynamic response of a soil-structure system. Based on that, the key parameters affecting the natural frequency of a soil-structure system can be easily identified and be used to assess the effects of soil-structure interaction. Accordingly, it was used to simulate the dynamic response of the forced vibration tests conducted at Hualien, Taiwan. Results obtained show that the simple model can predict the field responses very satisfactorily.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Karmegam Rajkumar ◽  
Ramanathan Ayothiraman ◽  
Vasant A. Matsagar

In this paper, the influence of soil-structure interaction (SSI) on a torsionally coupled turbo-generator (TG) machine foundation is studied under earthquake ground motions. The beneficial effects of base isolators in the TG foundation under earthquake ground motions are also studied duly, considering the effects of SSI. A typical TG foundation is analyzed using a three-dimensional finite element (FE) model. Two superstructure eccentricity ratios are considered to represent the torsional coupling. Soft soil properties are considered to study the effects of SSI. This research concludes that the effects of torsional coupling alter the natural frequencies, if ignored, could lead to unsafe design. The deck accelerations and displacements are increased with an increase in superstructure eccentricity. On the other hand, the deck accelerations and displacements are greatly reduced with the help of base isolators, thus confirming the beneficial use of base isolators in machine foundations to protect the sensitive equipment from the strong earthquake ground motions. However, the effects of SSI reduce the natural frequencies of the TG foundation resting on soft soil conditions and activate the higher mode participation, resulting in amplifying the response.


Sign in / Sign up

Export Citation Format

Share Document