Structures Subjected to Low-Level Blast Loads: Analysis of Aerodynamic Damping and Fluid-Structure Interaction

2012 ◽  
Vol 138 (5) ◽  
pp. 625-635 ◽  
Author(s):  
Martien Teich ◽  
Norbert Gebbeken
2011 ◽  
Vol 82 ◽  
pp. 491-496
Author(s):  
Martien Teich ◽  
Norbert Gebbeken ◽  
Martin Larcher

This paper analyses the e ects of air-structure interaction of systems subjectedto weak blast loads. While these coupling e ects are negligible for typical steel or concretestructures, they may dominate the dynamic response of lighter and more exible (compliant)systems like membranes, blast curtains or cable facades. For these light and exible systems,a classical decoupled analysis, i.e., neglecting the inuence of the surrounding air, might sig-ni cantly overestimate the deections and strains. However, we show that the coupling e ectscan be accounted for by basically adding a viscous aerodynamic damping force. We discussand compare two approaches how to obtain the aerodynamic damping term. With decreasingstructural sti ness and mass, the damping contribution of air increases signi cantly. The resultsof Hydrocode simulations are presented, and an outlook into further areas of research is given.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Thomas Giersch ◽  
Peter Hönisch ◽  
Bernd Beirow ◽  
Arnold Kühhorn

Radial turbine wheels designed as blade integrated disks (blisk) are widely used in various industrial applications. However, related to the introduction of exhaust gas turbochargers in the field of small and medium sized engines, a sustainable demand for radial turbine wheels has come along. Despite those blisks being state of the art, a number of fundamental problems, mainly referring to fluid-structure-interaction and, therefore, to the vibration behavior, have been reported. Aiming to achieve an enhanced understanding of fluid-structure-interaction in radial turbine wheels, a numerical method, able to predict forced responses of mistuned blisks due to aerodynamic excitation, is presented. In a first step, the unsteady aerodynamic forcing is determined by modeling the spiral casing, the stator vanes, and the rotor blades of the entire turbine stage. In a second step, the aerodynamic damping induced by blade vibration is computed using a harmonic balance technique. The structure itself is represented by a reduced order model being extended by aerodynamic damping effects and aerodynamic forcings. Mistuning is introduced by adjusting the modal stiffness matrix based on results of blade by blade measurements that have been performed at rest. In order to verify the numerical method, the results are compared with strain-gauge data obtained during rig-tests. As a result, a measured low engine order excitation was found by modeling the spiral casing. Furthermore, a localization phenomenon due to frequency mistuning could be proven. The predicted amplitudes are close to the measured data.


Author(s):  
Thomas Giersch ◽  
Peter Hönisch ◽  
Bernd Beirow ◽  
Arnold Kühhorn

Radial turbine wheels designed as blade integrated disks (blisk) are widely used in various industrial applications. However, related to the introduction of exhaust gas turbochargers in the field of small and medium sized engines a sustainable demand for radial turbine wheels has come along. Despite those blisks are state of the art, a number of fundamental problems, mainly referred to fluid-structure-interaction and therefore to the vibration behavior, have been reported. Aiming to achieve an enhanced understanding of fluid-structure-interaction in radial turbine wheels a numerical method, able to predict forced responses of mistuned blisks due to aerodynamic excitation, is presented. In a first step the unsteady aerodynamic forcing is determined by modeling the spiral casing, the stator vanes and the rotor blades of the entire turbine stage. In a second step the aerodynamic damping induced by blade vibration is computed using a harmonic balance technique. The structure itself is represented by a reduced order model being extended by aerodynamic damping effects and aerodynamic forcings. Mistuning is introduced by adjusting the modal stiffness matrix based on results of blade by blade measurements that have been performed at rest. In order to verify the numerical method, the results are compared with strain-gauge data obtained during rig-tests. As a result a measured low engine order excitation was found by modeling the spiral casing. Furthermore a localization phenomenon due to frequency mistuning could be proven. The predicted amplitudes are close to measured data.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
B. Mischo ◽  
P. Jenny ◽  
S. Mauri ◽  
Y. Bidaut ◽  
M. Kramer ◽  
...  

Unshrouded industrial centrifugal compressor impellers operate at high rotational speeds and volume flow rates. Under such conditions, the main impeller blade excitation is dominated by high frequency interaction with stationary parts, i.e., vaned diffusers or inlet guide vanes (IGVs). However, at severe part load operating conditions, sub-synchronous rotating flow phenomena (rotating stall) can occur and cause resonant blade vibration with significant dynamic (von-Mises) stress in the impeller blades. To ensure high aerodynamic performance and mechanical integrity, part load conditions must be taken into account in the aeromechanical design process via computational fluid dynamics (CFD) and finite element method (FEM) analyzes anchored by experimental verification. The experimental description and quantification of unsteady interaction between rotating stall cells and an unshrouded centrifugal compression stage in two different full scale compression units by Jenny and Bidaut (“Experimental Determination of Mechanical Stress Induced by Rotating Stall in Unshrouded Impellers of Centrifugal Compressors”, ASME J. Turbomach. 2016; 139(3):031011-031011-10) were reproduced in a scaled model test facility to enhance the understanding of the fluid–structure interaction (FSI) mechanisms and to improve design guide lines. Measurements with strain gauges and time-resolved pressure transducers on the stationary and rotating parts at different positions identified similar rotating stall patterns and induced stress levels. Rotating stall cell induced resonant blade vibration was discovered for severe off-design operating conditions and the measured induced dynamic von-Mises stress peaked at 15% of the mechanical endurance limit of the impeller material. Unsteady full annulus CFD simulations predicted the same rotating stall pressure fluctuations as the measurements. The unsteady Reynold's Averaged Navier-Stokes simulations were then used in FEM FSI analyses to predict the stress induced by rotating stall and assess the aerodynamic damping of the corresponding impeller vibration mode shape. Excellent agreement with the measurements was obtained for the stall cell pressure amplitudes at various locations. The relative difference between measured and mean predicted stress from fluid–structure interaction was 17% when resonant blade vibration occurred. The computed aerodynamic damping was 27% higher compared to the measurement.


Author(s):  
B. Mischo ◽  
P. Jenny ◽  
S. Mauri ◽  
Y. Bidaut ◽  
M. Kramer ◽  
...  

Unshrouded industrial centrifugal compressor impellers operate at high rotational speeds and volume flow rates. Under such conditions the main impeller blade excitation is dominated by high frequency interaction with stationary parts, i.e. vaned diffusers or inlet guide vanes. However, at severe part load operating conditions sub-synchronous rotating flow phenomena (rotating stall) can occur and cause resonant blade vibration with significant dynamic (von-Mises) stress in the impeller blades. To ensure high aerodynamic performance and mechanical integrity, part load conditions must be taken into account in the aero-mechanical design process via CFD and FEM analyses anchored by experimental verification. The experimental description and quantification of unsteady interaction between rotating stall cells and an unshrouded centrifugal compression stage in two different full scale compression units by Jenny and Bidaut [1] were reproduced in a scaled model test facility to enhance the understanding of the fluid-structure interaction mechanisms and to improve design guide lines. Measurements with strain gauges and time-resolved pressure transducers on the stationary and rotating parts at different positions identified similar rotating stall patterns and induced stress levels. Rotating stall cell induced resonant blade vibration was discovered for severe off-design operating conditions and the measured induced dynamic von-Mises stress peaked at 15% of the mechanical endurance limit of the impeller material. Unsteady full annulus CFD simulations predicted the same rotating stall pressure fluctuations as the measurements. The unsteady RANS simulations were then used in FEM fluid-structure interaction analyses to predict the stress induced by rotating stall and assess the aerodynamic damping of the corresponding impeller vibration mode shape. Excellent agreement with the measurements was obtained for the stall cell pressure amplitudes at various locations. The relative difference between measured and mean predicted stress from fluid-structure interaction was 17% when resonant blade vibration occurred. The computed aerodynamic damping was 27% higher compared to the measurement.


Sign in / Sign up

Export Citation Format

Share Document