spiral casing
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 13)

H-INDEX

7
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7539
Author(s):  
Yujian Fang ◽  
Ping Huang ◽  
Shibing Jin ◽  
Demin Liu ◽  
Jinfeng Zhang ◽  
...  

In order to understand the complex nature of the system dynamic phenomena, such as the strong vibration and noise caused by blade passage in the pump turbine, a state-of-the-art three-dimensional (3D) compressible transient simulation would be desirable to study the problem in depth. This study investigated the phase resonance (PR) that occurred during a full-load operation in the turbine mode of a pump turbine on a prototype scale. As a first step, the wave reflection at the boundaries, and the influence of the timestep and sound speeds on the behavior of traveling pressure waves inside a spiral casing, were studied. It was found that nonreflective boundary conditions and an appropriately small timestep are critical to capturing the wave reflection and superposition process inside a spiral casing; a certain kind of direct PR risk was detected in its system design. The detected direct PR differed from the well-known PR with two features: firstly, it was almost independent of the sound speeds, and secondly, the pressure distribution over the spiral circumference varied among the amplitudes. The latter feature was caused by pressure waves at every stator channel induced by a rotor stator interaction (RSI). The 3D flow simulation with an acoustic model, which couples the RSI and PR phenomena, would predict better results for understanding the problem than the simplified one-dimensional (1D) method.


2021 ◽  
Vol 312 ◽  
pp. 11003
Author(s):  
Piero Danieli ◽  
Massimo Masi ◽  
Andrea Lazzaretto ◽  
Gianluca Carraro

The basic RANS-CFD analysis of the simplest radial-inflow turbine configuration is the subject of this paper. An original technique is here proposed to model the effect of the vaneless spiral casing using single-channel CFD calculations and providing an effective alternative to the more complex simulation of the 360-degree domain otherwise required to simulate this turbine configuration. The aim of the paper is to verify the effectiveness of the proposed modelling technique as a reliable engineering approach conceived to support the preliminary design phase of radial-inflow turbines with time-effective CFD calculations. To this end, the open-source CFD code MULTALL has been used to predict the aerodynamic performance of optimal designs of radial-inflow turbines with different specific speed and diameter and working with air as ideal gas. The MULTALL predictions are compared with the corresponding steady-state results obtained by calculations suited to the preliminary assessment of radial turbines designs performed on fully 360-degree turbine domains using the commercial code Star CCM+®. The investigation is conducted on two turbines that are designed in accordance with a widely validated method. The results show that the proposed CFD approach predicts well the trends and values of the aerodynamic performance of both the turbine designs: a 5% overestimation of the performance predicted by the fully 360-degree CFD models was never exceeded. The suggested turbine modelling approach implemented in MULTALL requires a three times lower computation time than the corresponding traditional 360-degree model.


Author(s):  
Ahmed Farid Hassan ◽  
Tobias Müller ◽  
Markus Schatz ◽  
Damian M. Vogt

Abstract Radial turbine featuring a Multi-channel Casing (MC) is a new design under investigation for enhancing the turbine controllability. The idea behind this new design is to replace the traditional spiral casing with a MC, which allows controlling the mass flow by means of opening and closing control valves in each channel. The arrangement of the closed and opened channel is called the admission configuration, while the ratio between the counts of the open channels to the total number of channels is called the admission percentage. Among several aspects, when applying different admission configurations, the aerodynamic damping during resonant excitation is considered during the design of the turbine. The present study aims at investigating the effect of different MC admission configurations on the aerodynamic damping as an extension to an aerodynamic forcing study, which already assessed the different forcing patterns associated with these different admission configurations. Due to the asymmetry of the flow in circumferential direction resulting from the different partial admission configurations, the computational model is solved as full 3D time-marching, unsteady flow using ANSYS CFX in a one-way fluid-structure analysis. Two different modeling approaches have been considered in this study to investigate their capability of predicting the damping ratio for different MC admission configurations: a) the conventional isolated rotor approach and b) a full model consisting of the rotor and its casing. The results show that the casing affects the aerodynamic damping behavior, which can only be captured by the full model. Furthermore, the damping ratios for all different admission configurations have been calculated using the full stage model.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1310
Author(s):  
Binaya Baidar ◽  
Jonathan Nicolle ◽  
Bhupendra K. Gandhi ◽  
Michel J. Cervantes

This paper explores the possibility of using the Winter–Kennedy (WK) method for transient flow rate measurement in hydraulic turbines. Computational fluid dynamic (CFD) analysis of a numerical model of an axial turbine was carried out for accelerating and decelerating flows. Those were obtained by linearly opening and closing of the guide vanes, respectively, while retaining the inlet pressure constant during the simulations. The behavior of several WK configurations on a cross-sectional plane and along the azimuthal direction of the spiral casing was studied during the transients. The study showed that there are certain WK configurations that are more stable than others. The physical mechanism behind the stability (or instability) of the WK method during transients is presented. Using the steady WK coefficient obtained at the best efficiency point (BEP), the WK method could estimate the transient flow rate with a deviation of about 7.5% and 3.5%, for accelerating and decelerating flow, respectively.


2020 ◽  
Vol 5 (1) ◽  
pp. 37-41
Author(s):  
Ardit Gjeta ◽  
Lorenc Malka

In this paper, the effect of the outlet surface area of the spiral casing on the performance of a centrifugal fan was investigated using open source CFD software OpenFOAM [1]. An automized loop with RANS and data post-processing is set up using Matlab, for allowing a large number of parameter variations. The effect was analyzed as a function of total pressure loss and static pressure recovery coefficient and on total efficiency as well.


2020 ◽  
Vol 328 ◽  
pp. 02009
Author(s):  
Dušan Šlachtič ◽  
Branislav Knížat ◽  
Róbert Olšiak

Impeller trimming is a key impeller modification. It allows the best efficiency point (BEP) to be moved towards the region of lower flowrate and height, thus optimizing pump performance for specific piping systems. The paper deals with prediction of trimming results using CFD methods. Experience shows that modification of the BEP position depends on the trimming method as well as on the pump type and its specific speed. The analysed pump is of diagonal type with a specific speed of nb = 0.168. Its impeller is of a 4-blade design and a spiral casing is used as a volute. Seven cases of trimming are presented (including a non-trimmed original version). The paper compares CFD obtained data and data measured on an experimental stand. Additionally, the approach to CFD analysis, as well as the use of a turbulence model and characteristics of internal pump volume meshing are described.


2019 ◽  
Vol 4 (9) ◽  
pp. 181-185
Author(s):  
Ardit Gjeta

Industrial fans are subject to European Union energy labeling and Ecodesign requirements. By using more efficient industrial fans, Europe will save 34 TWh and avoid 16 million tones of CO2 emissions annually by 2020 [1]. In this paper, the effect of the clearance gap between the impeller and the volute, on the performance of a centrifugal fan was investigated using open source CFD software OpenFOAM [2]. An automized loop with RANS and data post-processing is set up using Matlab, for allowing a large number of parameter variations. We conducted numerical analysis for all operating points, where starting points are optimal impellers for the whole range of specific speeds [3], [4]. The effect of volute angle and geometrical parameters related to the tongue [5], on total pressure loss, static pressure recovery coefficient and on efficiency are presented.


2019 ◽  
Vol 1266 ◽  
pp. 012013 ◽  
Author(s):  
D.R. Dahal ◽  
S. Chitrakar ◽  
A. Kapali ◽  
B.S. Thapa ◽  
H.P. Neopane

Sign in / Sign up

Export Citation Format

Share Document