Flexural Behavior of Lightweight Aggregate Concrete Shear Walls with Boundary Element

2022 ◽  
Vol 148 (1) ◽  
Author(s):  
Keun-Hyeok Yang ◽  
Ju-Hyun Mun ◽  
Na-Kyung Oh
2020 ◽  
Vol 5 (6) ◽  
pp. 702-707
Author(s):  
Fariborz M. Tehrani ◽  
Nazmieh A. Masswadi ◽  
Nathan M. Miller ◽  
Arezoo Sadrinezhad

This paper presents the results of an experimental study to investigate dynamic properties of polypropylene fiber-reinforced concrete beams with lightweight expanded shale (ES) and tire-derived aggregates (TDA). The mixture design followed past experiences in combining ES and TDA to enhance toughness and energy absorption in flexural behavior. The new mixture also contained 2% fiber by volume to improve such properties further. Experiments included compressive testing on cylindrical specimens as well as flexural testing on rectangular specimens to verify mechanical properties of fiber-reinforced tire-derived lightweight aggregate concrete (FRTDLWAC) subject to static loading. The results of these experiments confirmed reduction of mechanical strength due to addition of TDA and improvements in flexural strength due to fiber reinforcement. The dynamic testing included non-destructive impact loads applied to flexural specimens using a standard Schmidt hammer. A high-speed camera recorded the response of the system at 200 frames per second to allow detailed observations and measurements. Interpretation of energy-based dynamic results revealed that TDA enhances energy absorption through damping in flexural behavior. Results also indicated that fiber reinforcement reduces the amount of absorbed dynamic energy, even though; it enhances the absorbed strain energy due to crack bridging effect.


2014 ◽  
pp. 385-403
Author(s):  
Zhongqiu Fu ◽  
◽  
Bohai Ji ◽  
Hirofumi Maeno ◽  
A. Eizien ◽  
...  

2021 ◽  
pp. 136943322110433
Author(s):  
Yijia Sun ◽  
Tao Wu ◽  
Xi Liu

Six lightweight aggregate concrete (LWC) beams reinforced with carbon fiber–reinforced polymer (CFRP) bars were tested under a four-point bending load with different steel fiber contents, reinforcement ratios, and clear span lengths to investigate their flexural behavior and serviceability performance. The test results showed that using steel fiber–reinforced lightweight aggregate concrete (SFLWC) and increasing the reinforcement ratio enhanced the serviceability performance of the beams. The incorporation of 0.6% by volume of steel fibers reduced the midspan deflection by 22.70%–36.87% at the same load level in service stage. At service load, all the CFRP-reinforced beams exhibited conservative deflections when compared to the deflection limits recommended by ACI 440.1 R and GB 50608, and satisfied the crack width limit of 0.7 mm. Comparing the measured maximum crack widths with the corresponding predictions revealed that the bond-dependent coefficient value of 1.4 specified in ACI 440.1 R was reasonable yet conservative. Moreover, an energy-based method was adopted to quantify the influence of the fibers on the beam stiffness. On this basis, a rational deflection model for SFLWC beams reinforced with CFRP bars was suggested.


Sign in / Sign up

Export Citation Format

Share Document