Experimental and Analytical Investigation of Shallow Floor Composite Beams under Extreme Deformation

2022 ◽  
Vol 148 (2) ◽  
Author(s):  
Panagiotis Kyriakopoulos ◽  
Simo Peltonen ◽  
Constantine Spyrakos ◽  
Ioannis Vayas ◽  
Matti V. Leskela
2003 ◽  
Vol 9 (5) ◽  
pp. 529-565 ◽  
Author(s):  
Michele Dilena ◽  
Antonino Morassi

This paper is the second part of an experimental-analytical investigation on the dynamic behavior of damaged steel-concrete composite beams. In the first part of the research, we presented and discussed the experimental results of a comprehensive series of dynamic tests performed on composite beams with damage in the connection. Experimental observations suggested the formulation of a composite beam analytical model, where the strain energy density of the connection also includes an energy term associated to the occurrence of relative transversal displacements between the reinforced concrete slab and the steel beam. A comparison with experimental results shows that the model enhances accuracy in describing the undamaged state of composite beams and that it is also appropriate to accurately predict the dynamic behavior under damaged conditions. A damage detection technique based on the measurement of variation in the first flexural frequencies was then applied to the suggested model and gave positive results.


2011 ◽  
Vol 7 (2) ◽  
pp. 28 ◽  
Author(s):  
T. Salama ◽  
H.H. Nassif

 The effective flange width is a concept proposed by various codes to simplify the computation of stress distribution across the width of composite beams. Questions have been raised as to the validity of the effective slab width provisions, since they have a direct effect on the computed ultimate moment as well as serviceability limit states such as deflection, fatigue, and overloading. The objective of this paper is to present results from an experimental and analytical investigation to determine the effective slab width in steel composite beams. The Finite Element Method (FEM) was employed for the analysis of composite steel-concrete beams having variable concrete flange widths. Results were compared to those from tests performed on eight beams loaded to failure. Beam test specimens had variable flange width and various degrees of composite action (shear connectors). The comparison presented in terms of the applied load versus deflection, and strain in the concrete slab show that the AISC-LRFD code is conservative and underestimates the width active. Based on a detailed parametric study an equation for the calculation of the effective flange width is recommended. 


1986 ◽  
Vol 13 (5) ◽  
pp. 575-582 ◽  
Author(s):  
S. Elkelish ◽  
Hugh Robinson

The effective width of the concrete slab of a composite beam is used in the determination of its moment resistance and service load moment for the purposes of structural design of the composite beam. It is usually assumed that the same effective width of the concrete slab may be used for both ultimate strength and elastic stage calculations.This paper presents the results of an analytical investigation of the variation of the effective width of composite beams and ribbed slabs formed by ribbed metal deck in both the elastic and inelastic stages and at ultimate load. A layered finite element method is used to model the composite beam. The influence of four variables on the effective width of the composite beams was studied, namely, type of loading, beam span to actual concrete slab width, ultimate compressive strength of the concrete, and steel beam size.It was found that the effect of the compressive strength of the concrete and the size of the steel beam have negligible influence on the effective width of the concrete slab. The effective width of the slab at ultimate load is of the order of 4% larger than that in the elastic range.The effective width used for the design of composite beams under a uniformly distributed load, which is the practical loading in most cases, is significantly different from that which should be used for any other type of loading.


Planta Medica ◽  
2012 ◽  
Vol 78 (05) ◽  
Author(s):  
M Wang ◽  
A Chittiboyina ◽  
B Avula ◽  
J Zhao ◽  
N Tabanca ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document