Leak-Before-Break Main Failure Prevention for Water Distribution Pipes Using Acoustic Smart Water Technologies: Case Study in Adelaide

2020 ◽  
Vol 146 (10) ◽  
pp. 05020020 ◽  
Author(s):  
Mark Stephens ◽  
Jinzhe Gong ◽  
Chi Zhang ◽  
Angela Marchi ◽  
Luke Dix ◽  
...  
2012 ◽  
Vol 7 (4) ◽  
Author(s):  
Michael Allen ◽  
Ami Preis ◽  
Mudasser Iqbal ◽  
Andrew J. Whittle

As aging water distribution infrastructures encounter failures with increasing frequency, there is a real need for integrated, on-line decision-support systems based on continuous in-network monitoring of hydraulic and water quality parameters. Such systems will form the basis of a Smart Water Grid, allowing water utilities to improve optimization of system operation, manage leakage control more effectively, and reduce the duration and disruption of repairs and maintenance. WaterWiSe is an integrated, end-to-end platform for real-time monitoring of water distribution systems that addresses these needs. This paper describes how WaterWiSe's sensing and software platforms have helped improve the operational efficiency of the water supply system in downtown Singapore.


Author(s):  
Aly-Joy Ulusoy ◽  
Filippo Pecci ◽  
Ivan Stoianov

AbstractThis manuscript investigates the design-for-control (DfC) problem of minimizing pressure induced leakage and maximizing resilience in existing water distribution networks. The problem consists in simultaneously selecting locations for the installation of new valves and/or pipes, and optimizing valve control settings. This results in a challenging optimization problem belonging to the class of non-convex bi-objective mixed-integer non-linear programs (BOMINLP). In this manuscript, we propose and investigate a method to approximate the non-dominated set of the DfC problem with guarantees of global non-dominance. The BOMINLP is first scalarized using the method of $$\epsilon $$ ϵ -constraints. Feasible solutions with global optimality bounds are then computed for the resulting sequence of single-objective mixed-integer non-linear programs, using a tailored spatial branch-and-bound (sBB) method. In particular, we propose an equivalent reformulation of the non-linear resilience objective function to enable the computation of global optimality bounds. We show that our approach returns a set of potentially non-dominated solutions along with guarantees of their non-dominance in the form of a superset of the true non-dominated set of the BOMINLP. Finally, we evaluate the method on two case study networks and show that the tailored sBB method outperforms state-of-the-art global optimization solvers.


Author(s):  
Pooria Ebrahimi ◽  
Stefano Albanese ◽  
Leopoldo Esposito ◽  
Daniela Zuzolo ◽  
Domenico Cicchella

Providing safe tap water has been a global concern. Water scarcity, the ever-increasing water demand, temporal variation of water consumption, aging urban water infrastructure and anthropogenic pressure on the water...


2010 ◽  
Vol 10 (2) ◽  
pp. 165-172 ◽  
Author(s):  
K. Diao ◽  
M. Barjenbruch ◽  
U. Bracklow

This paper aims to explore the impacts of peaking factors on a water distribution system designed for a small city in Germany through model-based analysis. As a case study, the water distribution network was modelled by EPANET and then two specific studies were carried out. The first study tested corresponding system-wide influences on water age and energy consumption if the peaking factors used at design stage are inconsistent with ones in real situation. The second study inspected the possible relationship between the choice of peaking factors and budgets by comparing several different pipe configurations of the distribution system, obtained according to variety of peaking factors. Given the analysis results, the first study reveals that average water age will increase if peaking factors estimated at design stage are larger than real values in that specific system, and vice versa. In contrast, energy consumption will increase if peaking factors defined for system design are smaller than ones in real case, and vice versa. According to the second study, it might be possible to amplify peaking factors for design dramatically by a slight increase in the investment on this system. However, further study on budget estimation with more factors and detailed information considered should be carried out.


2014 ◽  
Vol 89 ◽  
pp. 1545-1552 ◽  
Author(s):  
V. Ruzza ◽  
E. Crestani ◽  
G. Darvini ◽  
P. Salandin

Sign in / Sign up

Export Citation Format

Share Document