Sea Level Rise and Shoreline Change under Changing Climate Along the Indian Coastline

2020 ◽  
Vol 146 (5) ◽  
pp. 05020002
Author(s):  
Raghavendra G. Patil ◽  
M. C. Deo
2021 ◽  
Vol 9 (9) ◽  
pp. 974
Author(s):  
Maurizio D’Anna ◽  
Deborah Idier ◽  
Bruno Castelle ◽  
Sean Vitousek ◽  
Goneri Le Cozannet

Long-term (>decades) coastal recession due to sea-level rise (SLR) has been estimated using the Bruun Rule for nearly six decades. Equilibrium-based shoreline models have been shown to skillfully predict short-term wave-driven shoreline change on time scales of hours to decades. Both the Bruun Rule and equilibrium shoreline models rely on the equilibrium beach theory, which states that the beach profile shape equilibrates with its local wave and sea-level conditions. Integrating these two models into a unified framework can improve our understanding and predictive skill of future shoreline behavior. However, given that both models account for wave action, but over different time scales, a critical re-examination of the SLR-driven recession process is needed. We present a novel physical interpretation of the beach response to sea-level rise, identifying two main contributing processes: passive flooding and increased wave-driven erosion efficiency. Using this new concept, we analyze the integration of SLR-driven recession into equilibrium shoreline models and, with an idealized test case, show that the physical mechanisms underpinning the Bruun Rule are explicitly described within our integrated model. Finally, we discuss the possible advantages of integrating SLR-driven recession models within equilibrium-based models with dynamic feedbacks and the broader implications for coupling with hybrid shoreline models.


2013 ◽  
pp. 15-54
Author(s):  
Mary-Elena Carr ◽  
Madeleine Rubenstein ◽  
Alice Graff ◽  
Diego Villarreal

2021 ◽  
Vol 3 (1) ◽  
pp. 33-43
Author(s):  
Anushiya Jeganathan ◽  
Ramachandran Andimuthu ◽  
Palanivelu Kandasamy

Cities are dynamic systems resulting from the complex interaction of various socio-ecological and environmental developments. Climate change disproportionately affects cities mostly located in climate-sensitive areas; thus, these urban systems are the most critical in modern societies under changing climate scenarios, uncertain disruptions, and urban inhabitants' daily lives. It is essential to analyze the challenges in the metropolitan area through the lens of climate change. The present work analyses the challenges in Chennai, a coastal city in India and one of the chief industrial growth canters in Indian and South Asian region. The challenges are analyzed through the city’s system analysis via land use, green cover, population, and coastal hazards. Land use and green cover changes are studied through satellite images using ArcGIS and assessing coastal risks due to sea-level rise through GIS-based inundation model. There are drastic changes in land-use patterns; the green cover had reduced much, including agricultural and forest cover due to rapid urbanization. The land use has changed to 59.6% of the reduction in agriculture land, nearly 40% reduction in forest land, and 47% of the wetland over time. The observed mean sea level trend for Chennai is + 0.55 mm/year from 1916 to 2015 and the area of 21.75 sq. km is under the threat of inundation to 0.5m sea-level rise. The population growth, drastic changes in land use pattern, green cover reduction, and inundation due to sea-level rise increase the city's risks to climate change. There is a need to ensure that future land-use developments do not worsen the current climate risk level, either through influencing the hazards themselves or affecting the urban system's future vulnerability and adaptive capacity. The study also urges the zone level adaptation strategies to ensure the resilience of the city.


Shore & Beach ◽  
2020 ◽  
pp. 3-13
Author(s):  
James Houston

Beach nourishment and sea level rise will dominate future shoreline changes on Florida’s 665 miles of sandy coast. Shoreline changes from 2020-2100 are projected along this entire coast using equilibrium profile theory that accurately predicted shoreline changes on Florida’s east coast from 1970-2017 (Houston 2019). Projections for 2020- 2100 are made assuming past rates of beach nourishment for the 30-yr period from 1988-2017 will continue and sea level will rise according to recent projections of the Intergovernmental Panel on Climate Change (IPCC) that include the latest knowledge on ice melting in Antarctica (IPCC 2019). Using the beach nourishment and sea level rise data, equilibrium profile theory is then used to predict shoreline change from 2020-2100 for each IPCC sea level rise projection. Beach nourishment is shown to produce shoreline advance seaward on average for all IPCC scenarios for both the entire Florida coast and east coast and for all scenarios except the upper confidence level of the worst scenario for the southwest and Panhandle coasts. Some of the 30 counties on these coasts will require a greater rate of nourishment than in the past to offset sea level rise for some or all of the scenarios, whereas some will offset sea level rise for all scenarios with lower nourishment rates than in the past. The annual beach nourishment volume for which a county has a shortfall or surplus in offsetting sea level rise for each IPCC scenario can be calculated with the information provided and examples are presented. The approach can be used on coasts outside Florida if beach nourishment and sea level rise are expected to dominate future shoreline change.


Author(s):  
Marappan Jayanthi ◽  
Selvasekar Thirumurthy ◽  
Muthusamy Samynathan ◽  
Muthusamy Duraisamy ◽  
Moturi Muralidhar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document