northwest pacific ocean
Recently Published Documents


TOTAL DOCUMENTS

316
(FIVE YEARS 97)

H-INDEX

29
(FIVE YEARS 4)

Author(s):  
Natsumi Hookabe ◽  
Naoto Jimi ◽  
Hiroyuki Yokooka ◽  
Shinji Tsuchida ◽  
Yoshihiro Fujiwara

Abstract Lacydonia Marion & Bobretsky, 1875 is the sole genus in the family Lacydoniidae Bergström, 1914. We herein describe the new species of Lacydonia shohoensis sp. nov. from 2042-m deep bottoms at Shoho Seamount of the Nishi-Shichito Ridge, the Northwest Pacific Ocean. It is most similar to L. anapaulae Rizzo et al., 2016 in having a depression on the median anterior region and lacking lateral lobes on the posterior margin of prostomium whereas it is distinguished by possessing pygidium dorsally pigmented with three reddish spots and non-pigmented pygidial lateral cirri equally elongated.


2022 ◽  
Vol 12 (01) ◽  
pp. 91-102
Author(s):  
Heng Zhang ◽  
Chao Yang ◽  
Bo Xu ◽  
Yongchuang Shi ◽  
Guoqing Zhao ◽  
...  

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 66
Author(s):  
Hang Zeng ◽  
Jiaqi Huang ◽  
Zhengzui Li ◽  
Weihou Yu ◽  
Hui Zhou

The accurate design flood of hydraulic engineering is an important precondition to ensure the safety of residents, and the high precision estimation of flood frequency is a vital perquisite. The Xiangjiang River basin, which is the largest river in Hunan Province of China, is highly inclined to floods. This paper aims to investigate the annual maximum flood peak (AMFP) risk of Xiangjiang River basin under the climate context employing the Bayesian nonstationary time-varying moment models. Two climate covariates, i.e., the average June-July-August Artic Oscillation and sea level pressure in the Northwest Pacific Ocean, are selected and found to exhibit significant positive correlation with AMFP through a rigorous statistical analysis. The proposed models are tested with three cases, namely, stationary, linear-temporal and climate-based conditions. The results both indicate that the climate-informed model demonstrates the best performance as well as sufficiently explain the variability of extreme flood risk. The nonstationary return periods estimated by the expected number of exceedances method are larger than traditional ones built on the stationary assumption. In addition, the design flood could vary with the climate drivers which has great implication when applied in the context of climate change. This study suggests that nonstationary Bayesian modelling with climatic covariates could provide useful information for flood risk management.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yulin Bai ◽  
Jie Gong ◽  
Zhixiong Zhou ◽  
Bijun Li ◽  
Ji Zhao ◽  
...  

The Rock Bream (Oplegnathus fasciatus) is an economically important rocky reef fish of the Northwest Pacific Ocean. In recent years, it has been cultivated as an important edible fish in coastal areas of China. Despite its economic importance, genome-wide adaptions of domesticated O. fasciatus are largely unknown. Here we report a chromosome-level reference genome of female O. fasciatus (from the southern population in the subtropical region) using the PacBio single molecule sequencing technique (SMRT) and High-through chromosome conformation capture (Hi-C) technologies. The genome was assembled into 120 contigs with a total length of 732.95 Mb and a contig N50 length of 27.33 Mb. After chromosome-level scaffolding, 24 chromosomes with a total length of 723.22 Mb were constructed. Moreover, a total of 27,015 protein-coding genes and 5,880 ncRNAs were annotated in the reference genome. This reference genome of O. fasciatus will provide an important resource not only for basic ecological and population genetic studies but also for dissect artificial selection mechanisms in marine aquaculture.


2021 ◽  
Vol 13 (19) ◽  
pp. 3805
Author(s):  
Jiagen Li ◽  
Han Zhang ◽  
Shanshan Liu ◽  
Xiuting Wang ◽  
Liang Sun

Four sequential tropical cyclones generated and developed in the Northwest Pacific Ocean (NWP) in 2014, which had significant impacts on the oceanic environment and coastal regions. Based on a substantial dataset of multiple-satellite observations, Argo profiles, and reanalysis data, we comprehensively investigated the interactions between the oceanic environment and sequential tropical cyclones. Super typhoon Neoguri (2014) was the first typhoon-passing studied area, with the maximum sustained wind speed of 140 kts, causing strong cold wake along the track. The location of the strongest cold wake was consistent with the pre-existing cyclonic eddy (CE), in which the average sea surface temperature (SST) cooling exceeded −5 °C. Subsequently, three tropical cyclones passed the ocean environment left by Neoguri, namely, the category 2 typhoon Matmo (2014), the tropical cyclone Nakri (2014) and the category 5 typhoon Halong (2014), which caused completely different subsequent responses. In the CE, due to the fact that the ocean stratification was strongly destroyed by Neoguri and difficult to recover, even the weak Nakri could cause a secondary response, but the secondary SST cooling would be overridden by the first response and thus could cause no more serious ocean disasters. If the subsequent typhoon was super typhoon Halong, it could cause an extreme secondary SST cooling, exceeding −8 °C, due to the deep upwelling, exceeding 700 m, surpassing the record of the maximum cooling caused by the first typhoon. In the anti-cyclonic eddy (AE), since the first typhoon Neoguri caused strong seawater mixing, it was difficult for the subsequent weak typhoons to mix the deeper, colder and saltier water into the surface, thus inhibiting secondary SST cooling, and even the super typhoon Halong would only cause as much SST cooling as the first typhoon. Therefore, the ocean responses to sequential typhoons depended on not only TCs intensity, but also TCs track order and ocean mesoscale eddies. In turn, the cold wake caused by the first typhoon, Neoguri, induced different feedback effects on different subsequent typhoons.


2021 ◽  
Vol 13 (17) ◽  
pp. 3435
Author(s):  
Fenglin Tian ◽  
Zhijiao Li ◽  
Zhonghao Yuan ◽  
Ge Chen

This paper proposes an algorithm named EddyGraph for tracking mesoscale eddy splitting and merging events. Twenty-seven years (January 1993–December 2019) of sea level anomaly (SLA) data are analyzed in the Northwest Pacific Ocean (105°E–165°W, 0°N–60°N). First, we propose a multilevel eddy identification method based on SLA to obtain an eddytree data set, representing a spatial topological tree structure of closed SLA contours with mononuclear eddies, multicore eddies and eddy seeds as the leaf nodes and eddygroups (reflecting the spatial topological relationship among eddies) as the intermediate nodes. The EddyGraph tracking algorithm is applied to the eddytree data set, which results in eddy-directed acyclic graphs (Eddy-DAGs). Only eddies contained within a common eddygroup are tracked as sources in merging events or sinks in splitting events. Furthermore, we extract typical splitting and merging events and composite the sea surface temperature anomalies (SSTAs) inside the eddygroups and eddies during these events. The results confirm that merging eddies in the same eddygroup degenerate into a single eddy and that a splitting eddy evolves into eddies within the same parent eddygroup. Moreover, we match a merging event of cyclonic eddies with in situ data of both drifters and loopers in Lagrangian trajectories. Finally, we present EddyGraph, a data set of mesoscale eddy tracking in the Northwest Pacific Ocean (105°E–165°W, 0°N–60°N).


Sign in / Sign up

Export Citation Format

Share Document