Transport of Placed Dredged Material in Surf and Nearshore Zone

2021 ◽  
Vol 147 (3) ◽  
pp. 05021002
Author(s):  
Honghai Li
Author(s):  
Douglas A. Gaffney ◽  
Edward S. Gorleski ◽  
Genevieve Boehm Clifton

Author(s):  
Nobuhiro Matsunaga ◽  
Misao Hashida ◽  
Hiroshi Kawakami

Author(s):  
Nataliya Belova ◽  
Nataliya Belova ◽  
Alisa Baranskaya ◽  
Alisa Baranskaya ◽  
Osip Kokin ◽  
...  

The coasts of Baydaratskaya Bay are composed by loose frozen sediments. At Yamal Peninsula accumulative coasts are predominant at the site where pipeline crosses the coast, while thermoabrasional coast are prevail at the Ural coast crossing site. Coastal dynamics monitoring on both sites is conducted using field and remote methods starting from the end of 1980s. As a result of construction in the coastal zone the relief morphology was disturbed, both lithodynamics and thermal regime of the permafrost within the areas of several km around the sites where gas pipeline crosses coastline was changed. At Yamal coast massive removal of deposits from the beach and tideflat took place. The morphology of barrier beach, which previously was a natural wave energy dissipater, was disturbed. This promoted inland penetration of storm surges and permafrost degradation under the barrier beach. At Ural coast the topsoil was disrupted by construction trucks, which affected thermal regime of the upper part of permafrost and lead to active layer deepening. Thermoerosion and thermoabrasion processes have activated on coasts, especially at areas with icy sediments, ice wedges and massive ice beds. Construction of cofferdams resulted in overlapping of sediments transit on both coasts and caused sediment deficit on nearby nearshore zone areas. The result of technogenic disturbances was widespread coastal erosion activation, which catastrophic scale is facilitated by climate warming in the Arctic.


Author(s):  
Andrei Sokolov ◽  
Andrei Sokolov ◽  
Boris Chubarenko ◽  
Boris Chubarenko

Three dumping sites located at the south-eastern part of the Baltic Sea (Kaliningrad Oblast) at shallow depths are considered. The first one is located to the south of the Vistula Lagoon inlet in front of a permanently eroded open marine shore segment. The second one is located to the north of the Vistula Lagoon inlet, and is used now for disposing of dredged material extracted from the Kaliningrad Seaway Canal. The third dumping site is located near the northern shore of the Sambian Peninsula to the east of the Cape Gvardeijski and assigned for disposing the dredged material extracted from the fairway to the Pionerskij Port located nearby. The last site is planned to be used for disposing of dredged material from the future port that should be constructed there before the beginning of the FIFA World Cup 2018. All three dumping sites are located not far from the eroded segments of the shore. The question behind the study is: would it possible that disposed material will naturally transported from the damping site to the shore and accumulate there to protect it from erosion? A numerical hydrodynamic-transport 3D model (MIKE) was used to model sediment transport under different wind actions. The winds with the speed stronger than 15 m/s complete wash out disposed material from the dumping site and spreading it over the wide area with a negligible layer thickness. Winds of about 7-10 m/s transport material along the shore at a distance of few kilometers that may be useful for shore protection. The first location of the dumping site (to the south of the Vistula Lagoon inlet) looks very ineffective for potential protection the shore nearby. At the other hand, the second and especially the third locations are favorable for transport of disposed material to the shore, the most favorable conditions are at onshore or alongshore currents.


Sign in / Sign up

Export Citation Format

Share Document