scholarly journals Feasibility of Very Large Floating Structure as Offshore Wind Foundation: Effects of Hinge Numbers on Wave Loads and Induced Responses

2021 ◽  
Vol 147 (3) ◽  
pp. 04021002
Author(s):  
Xiantao Zhang ◽  
Da Lu ◽  
Yibo Liang ◽  
Feargal Brennan
Author(s):  
Tomoki Ikoma ◽  
Masato Kobayashi ◽  
Koichi Masuda ◽  
Chang-Kyu Rheem ◽  
Hisaaki Maeda

An aircushion type floating structure can prevent to enlarge the wave drifting force restraining the hydroelastic response of it in water waves. The floating structure should be large scale to incident waves in order to make the best use of such advantages, i.e. it is a very large floating structure. The linear potential theory is useful to easily handle the wave force etc. on the aircushion type floating structure theoretically because it is predicted that its theory can give good results of behaviors of water elevation within aircushions and pressure and of wave loads on the structure qualitatively. The authors have confirmed from our past model experiments that non-linear effect does not always increase but for some exceptions. A prediction method of hydroelastic responses for the aircushion type very large floating structure by using the three-dimensional linear potential theory is shown in this paper. The validity of the method is proven and the application of the method is investigated by comparing the theoretical results with the results of the past model experiments.


Author(s):  
G. K. V. Ramachandran ◽  
H. Bredmose ◽  
J. N. Sørensen ◽  
J. J. Jensen

A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes three-dimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11 for the wind turbine. Three-dimensional hydrodynamic loads have been formulated using a frequency- and direction-dependent spectrum. While wave loads are computed from the wave kinematics using Morison’s equation, aerodynamic loads are modelled by means of unsteady Blade-Element-Momentum (BEM) theory, including Glauert correction for high values of axial induction factor, dynamic stall, dynamic wake and dynamic yaw. The aerodynamic model takes into account the wind shear and turbulence effects. For a representative geographic location, platform responses are obtained for a set of wind and wave climatic conditions. The platform responses show an influence from the aerodynamic loads, most clearly through a quasi-steady mean surge and pitch response associated with the mean wind. Further, the aerodynamic loads show an influence from the platform motion through more fluctuating rotor loads, which is a consequence of the wave-induced rotor dynamics. In the absence of a controller scheme for the wind turbine, the rotor torque fluctuates considerably, which induces a growing roll response especially when the wind turbine is operated nearly at the rated wind speed. This can be eliminated either by appropriately adjusting the controller so as to regulate the torque or by optimizing the floater or tendon dimensions, thereby limiting the roll motion. Loads and coupled responses are predicted for a set of load cases with different wave headings. Based on the results, critical load cases are identified and discussed. As a next step (which is not presented here), the dynamic model for the substructure is therefore being coupled to an advanced aero-elastic code Flex5, Øye (1996), which has a higher number of DOFs and a controller module.


2021 ◽  
Author(s):  
Shoichiro Furuya ◽  
Tomoki Ikoma ◽  
Yasuhiro Aida ◽  
Koichi Masuda ◽  
Hiroaki Eto

Sign in / Sign up

Export Citation Format

Share Document