Estimation of Dispersion in Unsteady Random Flow Condition in Dead-End Pipes of Water Distribution System

Author(s):  
Yeongho Lee ◽  
Steven G. Buchberger
2010 ◽  
Vol 15 (39) ◽  
Author(s):  
A Trop Skaza ◽  
L Beskovnik ◽  
A Storman ◽  
S Ursic ◽  
B Groboljsek ◽  
...  

We report an outbreak of Legionnaires' disease in a nursing home in Slovenia in August 2010 affecting 15 of 234 residents. To date, Legionnaires' disease has been confirmed in four patients. Further serum analyses and genotyping of isolates are ongoing. The building's water distribution system with dead end sections has been identified as the probable source of infection.


2008 ◽  
Vol 3 (2) ◽  
Author(s):  
Jayong Koo ◽  
Toyono Inakazu ◽  
Akira Koizumi ◽  
Yasuhiro Arai ◽  
Kyoungpil Kim ◽  
...  

It is difficult to estimate residual chlorine at the dead-end area of the water distribution network because chlorine consumption is influenced by various factors. Therefore, there are many water utilities that control the amounts of chlorine in reservoirs using empirical trial-and-error methods to maintain safe levels of residual chlorine in the distribution system. In this study, an ANN model of residual chlorine concentration is proposed which could be used to reduce in chlorine use in water distribution system. The ANN model with best performance was selected by training and verification. The five scenarios for the reduction in chlorine use were analyzed by setting the input chlorine as low as 0.05~0.25 mg/L compared with the input chlorine observed in the time series. Case 4 is the best to be satisfied with the input condition (0.4 mg/L or more) and output condition (0.34 mg/L or more) at the same time. It is possible to reduce chlorine in use up to 0.2 mg/L in the maximum amount.


2008 ◽  
Vol 8 (4) ◽  
pp. 421-426
Author(s):  
J. Menaia ◽  
M. Benoliel ◽  
A. Lopes ◽  
C. Neto ◽  
E. Ferreira ◽  
...  

Concerns arise from the possible occurrence of pathogens in drinking water pipe biofilms and storage tank sediments. In these studies, biofilm samples from pipes and sediments from storage tanks of the Lisbon drinking water distribution system were analyzed. Protein determinations and heterotrophic counts on pipe biofilm samples were used to assess the Lisbon network sessile colonization intensity and distribution. Indicator and pathogenic microorganisms were analyzed in pipe biofilm samples, as well as in storage tanks biofilm and sediments, by using cultural methods and PCR, to assess risks. Results have shown that the Lisbon network sessile colonization is relatively weak in intensity. In addition, no meaningful hazards were apparent for both the network biofilm and the storage tanks biofilm and sediments.


Sign in / Sign up

Export Citation Format

Share Document