COASTMAP: A Globally Re-Locatable, Real Time Marine environmental Monitoring and Modeling System, with Application to Narragansett Bay and Southern New England Coastal Waters

Author(s):  
Malcolm L. Spaulding ◽  
E. Howlett ◽  
M. Ward ◽  
C. Galagan
Geosciences ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 265 ◽  
Author(s):  
David S. Ullman ◽  
Isaac Ginis ◽  
Wenrui Huang ◽  
Catherine Nowakowski ◽  
Xuanyu Chen ◽  
...  

The southern New England coast of the United States is particularly vulnerable to land-falling hurricanes because of its east-west orientation. The impact of two major hurricanes on the city of Providence (Rhode Island, USA) during the middle decades of the 20th century spurred the construction of the Fox Point Hurricane Barrier (FPHB) to protect the city from storm surge flooding. Although the Rhode Island/Narragansett Bay area has not experienced a major hurricane for several decades, increased coastal development along with potentially increased hurricane activity associated with climate change motivates an assessment of the impacts of a major hurricane on the region. The ocean/estuary response to an extreme hurricane is simulated using a high-resolution implementation of the ADvanced CIRCulation (ADCIRC) model coupled to the Precipitation-Runoff Modeling System (PRMS). The storm surge response in ADCIRC is first verified with a simulation of a historical hurricane that made landfall in southern New England. The storm surge and the hydrological models are then forced with winds and rainfall from a hypothetical hurricane dubbed “Rhody”, which has many of the characteristics of historical storms that have impacted the region. Rhody makes landfall just west of Narragansett Bay, and after passing north of the Bay, executes a loop to the east and the south before making a second landfall. Results are presented for three versions of Rhody, varying in the maximum wind speed at landfall. The storm surge resulting from the strongest Rhody version (weak Saffir–Simpson category five) during the first landfall exceeds 7 m in height in Providence at the north end of the Bay. This exceeds the height of the FPHB, resulting in flooding in Providence. A simulation including river inflow computed from the runoff model indicates that if the Barrier remains closed and its pumps fail (for example, because of a power outage or equipment failure), severe flooding occurs north of the FPHB due to impoundment of the river inflow. These results show that northern Narragansett Bay could be particularly vulnerable to both storm surge and rainfall-driven flooding, especially if the FPHB suffers a power outage. They also demonstrate that, for wind-driven storm surge alone under present sea level conditions, the FPHB will protect Providence for hurricanes less intense than category five.


2019 ◽  
Vol 143 ◽  
pp. 144-151 ◽  
Author(s):  
Xiaolin Bian ◽  
Xiaoming Li ◽  
Ping Qi ◽  
Zhenghao Chi ◽  
Ran Ye ◽  
...  

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 40
Author(s):  
Betty J. Kreakie ◽  
Kristopher Winiarski ◽  
Richard McKinney

In 2004, the Atlantic Ecology Division of the US Environmental Protection Agency’s Office of Research and Development began an annual winter waterfowl survey of Rhode Island’s Narragansett Bay. Herein, we explore the survey data gathered from 2004 to 2011 in order to establish a benchmark understanding of our waterfowl communities and to establish a statistical framework for future environmental monitoring. The abundance and diversity of wintering waterfowl were relatively stable during the initial years of this survey, except in 2010 when there was a large spike in abundance and a reciprocal fall in diversity. There was no significant change in ranked abundance of most waterfowl species, with only Bufflehead (Bucephala albeola) and Hooded Merganser (Lophodytes cucllatus) showing a slight yet significant upward trend during the course of our survey period. Nonmetric multidimensional scaling (NMDS) was used to examine the community structure of wintering waterfowl. The results of the NMDS indicate that there is a spatial structure to the waterfowl communities of Narragansett Bay and this structure has remained relatively stable since the survey began. Our NMDS analysis helps to solidify what is known anecdotally about the bay’s waterfowl ecology, and provides a formalized benchmark for long-term monitoring of Narragansett Bay’s waterfowl communities. Birds, including waterfowl, are preferred bioindicators and we propose using our multivariate approach to monitor the future health of the bay. While this research focuses on a specific area of New England, these methods can be easily applied to novel areas of concern and provide a straightforward nonparametric approach to community-level monitoring. The methods provide a statistic test to examine potential drivers of community turnover and well-suited visualization tools.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 40
Author(s):  
Betty J. Kreakie ◽  
Kristopher Winiarski ◽  
Richard McKinney

In 2004, the Atlantic Ecology Division of the US Environmental Protection Agency’s Office of Research and Development began an annual winter waterfowl survey of Rhode Island’s Narragansett Bay. Herein, we explore the survey data gathered from 2004 to 2011 in order to establish a benchmark understanding of our waterfowl communities and to establish a statistical framework for future environmental monitoring. The abundance and diversity of wintering waterfowl were relatively stable during the initial years of this survey, except in 2010 when there was a large spike in abundance and a reciprocal fall in diversity. There was no significant change in ranked abundance of most waterfowl species, with only Bufflehead (Bucephala albeola) and Hooded Merganser (Lophodytes cucllatus) showing a slight yet significant upward trend during the course of our survey period. Nonmetric multidimensional scaling (NMDS) was used to examine the community structure of wintering waterfowl. The results of the NMDS indicate that there is a spatial structure to the waterfowl communities of Narragansett Bay and this structure has remained relatively stable since the survey began. Our NMDS analysis helps to solidify what is known anecdotally about the bay’s waterfowl ecology, and provides a formalized benchmark for long-term monitoring of Narragansett Bay’s waterfowl communities. Birds, including waterfowl, are preferred bioindicators and we propose using our multivariate approach to monitor the future health of the bay. While this research focuses on a specific area of New England, these methods can be easily applied to novel areas of concern and provide a straightforward nonparametric approach to community-level monitoring. The methods provide a statistic test to examine potential drivers of community turnover and well-suited visualization tools.


2000 ◽  
Vol 21 (2) ◽  
pp. 139-153 ◽  
Author(s):  
Joseph N. Waller

Archaeological investigations at Woodland sites in the Narragansett Bay drainage have aided in a refinement of Late Woodland settlement and subsistence models. Popular theory holds that intensive maize horticulture and the formation of tribal villages occurred relatively late in the prehistoric period or possibly were the result of European Contact. Archaeological investigations in coastal sections of Rhode Island indicate that village settlements and likely intensive maize horticulture were elements of Late Woodland settlement and subsistence behavior in and around Narragansett Bay and not Contact period phenomena.


Sign in / Sign up

Export Citation Format

Share Document