southern new england
Recently Published Documents


TOTAL DOCUMENTS

670
(FIVE YEARS 85)

H-INDEX

44
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Thu Nguyen-Anh Tran ◽  
Nathan B Wikle ◽  
Fuhan Yang ◽  
Haider Inam ◽  
Scott Leighow ◽  
...  

AbstractEstimating an infectious disease attack rate requires inference on the number of reported symptomatic cases of a disease, the number of unreported symptomatic cases, and the number of asymptomatic infections. Population-level immunity can then be estimated as the attack rate plus the number of vaccine recipients who had not been previously infected; this requires an estimate of the fraction of vaccines that were distributed to seropositive individuals. To estimate attack rates and population immunity in southern New England, we fit a validated dynamic epidemiological model to case, clinical, and death data streams reported by Rhode Island, Massachusetts, and Connecticut for the first 15 months of the COVID-19 pandemic, from March 1 2020 to May 31 2021. This period includes the initial spring 2020 wave, the major winter wave of 2020-2021, and the lagging wave of lineage B.1.1.7(Alpha) infections during March-April 2021. In autumn 2020, SARS-CoV-2 population immunity (equal to the attack rate at that point) in southern New England was still below 15%, setting the stage for a large winter wave. After the roll-out of vaccines in early 2021, population immunity in many states was expected to approach 70% by spring 2021, with more than half of this immune population coming from vaccinations. Our population immunity estimates for May 31 2021 are 73.4% (95% CrI: 72.9% - 74.1%) for Rhode Island, 64.1% (95% CrI: 64.0% - 64.4%) for Connecticut, and 66.3% (95% CrI: 65.9% - 66.9%) for Massachusetts, indicating that >33% of southern Englanders were still susceptible to infection when the Delta variant began spreading in July 2021. Despite high vaccine coverage in these states, population immunity in summer 2021 was lower than planned due to 34% (Rhode Island), 25% (Connecticut), and 28% (Massachusetts) of vaccine distribution going to seropositive individuals. Future emergency-setting vaccination planning will likely have to consider over-vaccination as a strategy to ensure that high levels of population immunity are reached during the course of an ongoing epidemic.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Caroline G. Borden ◽  
Marlyse C. Duguid ◽  
Mark S. Ashton

Abstract Background Over the last century, fire exclusion has caused dramatic structural and compositional changes to southern New England forests, highlighting the need to reintroduce fires into the historically pyrogenic landscape to study the response. We investigated the effects of a single overstory thinning and midstory removal to create an open oak-hickory woodland structure, followed by repeated prescribed burns. We hypothesized that burning would create greater floristic diversity comprising fire-tolerant woody regeneration and shade-intolerant herbaceous flora. We followed shifts in plant structure, composition, and diversity over a 23-year period, using a before-after-control-impact design with data collected once prior to burning and twice after burn treatments had begun and with soil samples collected after nearly 20 years of burning. Results We observed a dense ingrowth of saplings on unburned plots that were largely absent from burned plots and a shift in midstory composition to favor mesic sweet birch (Betula lenta L.) in the unburned treatment, as opposed to the hickories (Carya Nutt. spp.) and oaks (Quercus L. spp.) that dominated the burned treatment. Burning resulted in a significantly greater density, richness, Shannon diversity, and evenness of understory vegetation (forbs, shrubs, tree seedlings). These four measures remained high on burned plots, despite a decrease in both floristic diversity and evenness on unburned plots and a reduction in unburned site-level richness. Understory composition varied significantly by year and burn treatment, with unburned plots largely characterized by shade-tolerant species while burned plots showed an enhanced abundance of heliophilic plants. Conclusions Our results suggest that periodic burning increases nutrient microsite heterogeneity and periodically maintains greater understory light, both of which in turn increase understory plant density and diversity and cause a shift in understory composition. This study shows that repeated prescribed burns in an open New England woodland have lasting structural and compositional effects capable of restoring pre-settlement, pyrogenic vegetation patterns.


Author(s):  
Jeffrey S. Ward ◽  
Chad Jones ◽  
Joseph Barsky

After decades of multiyear defoliation episodes in southern New England, Lymantria dispar dispar (previously gypsy moth) populations diminished with the appearance of the L. dispar fungus in 1989. Multiyear defoliations did not occur again until 2015-2018. To assess the impact of the return of multiyear defoliations, we examined 3095 oaks on 29 permanent study areas in Connecticut and Rhode Island that were established at least eleven years before the latest outbreaks. Pre-defoliation stand level oak mortality averaged 2% (three-year basis). Post-defoliation mortality did not differ between managed and unmanaged stands, but was much higher in severely defoliated stands (36%) than in stands with moderate (7%) or low-no defoliation (1%). Pre-defoliation mortality of individual trees differed among species, was lower for larger diameter trees and on unmanaged than managed stands. Post-defoliation mortality on plots with no to moderate defoliation was similar to pre-defoliation mortality levels. Following multiyear defoliations, white oak mortality was higher than for northern red and black oak. There was weak evidence that mortality was elevated on stands with higher basal area following severe defoliation. Natural resource managers should not assume that oaks that survived earlier multiyear defoliations episodes will survive future multiyear outbreaks, possibly because trees are older.


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1159
Author(s):  
Sam R. Telford ◽  
Heidi K. Goethert ◽  
Timothy J. Lepore

Fifty years ago, the index case of human babesiosis due to Babesia microti was diagnosed in a summer resident of Nantucket Island. Human babesiosis, once called “Nantucket fever” due to its seeming restriction to Nantucket and the terminal moraine islands of southern New England, has emerged across the northeastern United States to commonly infect people wherever Lyme disease is endemic. We review the history of babesiosis on Nantucket, analyze its epidemiology and ecology there, provide summaries of the first case histories, and comment on its future public health burden.


Rhodora ◽  
10.3119/20-24 ◽  
2021 ◽  
Vol 122 (991) ◽  
Author(s):  
Amanda K. Weise ◽  
Peter P. Grima ◽  
Matthew Charpentier ◽  
Margaret Curtin ◽  
Gregory Palermo

Sign in / Sign up

Export Citation Format

Share Document