Application of Remote Sensing to Water Resources Management in Arid Regions of China

Author(s):  
Jiren Li
2020 ◽  
Vol 15 (5) ◽  
pp. 691-700
Author(s):  
Ahmed Shahadha Muneer ◽  
Khamis Naba Sayl ◽  
Ammar Hatem Kamel

One of the most important challenges in the field of engineering hydrology and water resources management, especially in arid regions such as the Iraqi Western Desert, is the process of predicting and quantifying the surface runoff. The limited available data about rainfall, runoff, soil properties, evaporation, and the lack of metrological stations make the process of predicting and calculating surface runoff a very difficult task. Modern technology can help with the purpose of compensating for the shortage of data and providing the information necessary to estimate the runoff and develop the system of water resources management in the region. The present study develops a model to determine the infiltration of soil from spectral reflectance using Artificial Neural Networks (ANN) integrated with a geographic information system (GIS) and remote sensing (RS). Field infiltration measurements for 105 soil samples in the Al-Ratga catchment area in the Iraqi western desert are achieved. The performance of the developed model was assessed both qualitatively and quantitatively (effective runoff depth) by comparing the results of actual and estimated basic infiltration rate values for each sample. The results refer to a good agreement between estimated and measured infiltration (R2=0.768). The developed model predicts the runoff depending on the water balance equation and the results refer to good agreement with the SCS-CN model that is one of the most widely used in this region.


2020 ◽  
Vol 163 (3) ◽  
pp. 1247-1266 ◽  
Author(s):  
Hagen Koch ◽  
Ana Lígia Chaves Silva ◽  
Stefan Liersch ◽  
José Roberto Gonçalves de Azevedo ◽  
Fred Fokko Hattermann

AbstractSemi-arid regions are known for erratic precipitation patterns with significant effects on the hydrological cycle and water resources availability. High temporal and spatial variation in precipitation causes large variability in runoff over short durations. Due to low soil water storage capacity, base flow is often missing and rivers fall dry for long periods. Because of its climatic characteristics, the semi-arid north-eastern region of Brazil is prone to droughts. To counter these, reservoirs were built to ensure water supply during dry months. This paper describes problems and solutions when calibrating and validating the eco-hydrological model SWIM for semi-arid regions on the example of the Pajeú watershed in north-eastern Brazil. The model was calibrated to river discharge data before the year 1983, with no or little effects of water management, applying a simple and an enhanced approach. Uncertainties result mainly from the meteorological data and observed river discharges. After model calibration water management was included in the simulations. Observed and simulated reservoir volumes and river discharges are compared. The calibrated and validated models were used to simulate the impacts of climate change on hydrological processes and water resources management using data of two representative concentration pathways (RCP) and five earth system models (ESM). The differences in changes in natural and managed mean discharges are negligible (< 5%) under RCP8.5 but notable (> 5%) under RCP2.6 for the ESM ensemble mean. In semi-arid catchments, the enhanced approach should be preferred, because in addition to discharge, a second variable, here evapotranspiration, is considered for model validation.


2009 ◽  
Vol 24 (11) ◽  
pp. 2419-2436 ◽  
Author(s):  
Petra J. G. J. Hellegers ◽  
Richard Soppe ◽  
Chris J. Perry ◽  
Wim G. M. Bastiaanssen

Sign in / Sign up

Export Citation Format

Share Document