Factors Controlling Tidal Flat Response to Sea Level Rise: Roberts Bank, British Columbia, Canada

2006 ◽  
Author(s):  
Alexandra Shaw ◽  
D. Gwyn Lintern ◽  
Philip R. Hill ◽  
Chris Houser
2018 ◽  
Vol 10 (1) ◽  
pp. 109 ◽  
Author(s):  
Curt D. Peterson ◽  
Sandy Vanderburgh

The late-Holocene record of tidal flat deposition in the large shallow Willapa Bay estuary (43 km in length), located in the Columbia River Littoral Cell (CRLC) system (160 km length), was investigated with new vibracores (n=30) and gouge cores (n=8), reaching 2–5 m depth subsurface. Reversing up-core trends of muddy sand to peaty mud deposits in marginal tidal flat settings demonstrate episodic submergence events resulting from cyclic tectonic uplift and subsidence (1–2 m) in the Cascadia subduction zone. These short-term reversals are superimposed on longer-term trends of overall sediment coarsening-up, which represent the transgression of higher-energy sandy tidal flats over pre-existing lower-energy tidal flat mud and peaty mud deposits in late-Holocene time. Fining-up trends associated with channel lateral migration and accretionary bank deposition occurred only infrequently in the broad intertidal flats of Willapa Bay. Vibracores and gouge cores were dated by 14C (n=16) and paleo-subsidence event contacts (n=17). Vibracore median probability 14C ages ranged from 0 to 6,992 yr BP and averaged 2,174 yr BP. Dated sample ages and corresponding depths of tidal flat deposits yield net sedimentation rates of 0.9–1.2 m ka-1, depending on the averaging methods used. Net sedimentation rates in the intertidal flat settings (~1.0 m ka-1) are comparable to the rate of net sea level rise (~1.0 m ka-1), as based on dated paleo-tidal marsh deposits in Willapa Bay. Reported modern inputs of river sand (total=1.77x104 m3 yr-1), from the three small rivers that flow into Willapa Bay, fall well short of the estimated increasing accommodation space (1.9x105 m3 yr-1) in the intertidal (MLLW-MHHW) setting (1.9x108 m2 surface area) during the last 3 ka, or 3.0 m of sea level rise. The under-supply of tributary sand permitted the influx of littoral sand (1.1x105 m3 yr-1) into Willapa Bay, as based on the net sedimentation rate (~1.0 m ka-1) and textural composition (average 60 % littoral sand) in analyzed core sections (n=179). The long-term littoral sand sink in Willapa Bay’s intertidal setting (55 % of total estuary area) is estimated to be about 5 % of the Columbia River supply of sand to the CRLC system, and about 30% relative to the littoral sand accumulated in barrier spits and beach plains during late-Holocene time. A 2.0 m rise in future sea level could yield a littoral sand sink of 2.2x108 m3 in the Willapa Bay intertidal setting, resulting in an equivalent shoreline retreat of 600 m along a 50 km distance of the barrier spit and beach plains that are located adjacent to the Willapa Bay tidal inlet. Willapa Bay serves as proxy for potential littoral sand sinks in other shallow mesotidal estuary-barrier-beach systems around the world following future global sea level rise.


2013 ◽  
Author(s):  
P R Hill ◽  
R W Butler ◽  
R W Elner ◽  
C Houser ◽  
M L Kirwan ◽  
...  

2011 ◽  
pp. 63-69
Author(s):  
Nenad Banjac ◽  
Divna Jovanovic

An attempt was made to describe two parasequences separated within the sediments of the Kotroman Formation at the Mokra Gora Village in western Serbia. The whole formation, of Albian-Cenomanian age, in some general characteristics corresponds to tidal flats, some of which were described in the literature (LARSONNEUR 1975), and the sediments were compared with ones from recent tidal flat environments. The heterogeneous composition of the Kotroman Formation influenced different authors to describe several non-synchronous and incomparable superpositioned packages. The parasequences were investigated in the attempt to correlate them with the stratigraphic age of the members. The parasequences were formed during the Albian transgression and represent a gradual deepening of the wider area. Well-developed flooding surfaces with significant deepening indicated retrogradational stacking of certain transgressive system tracts and reflect landward movement of the shoreline, indicating a gradual sea level rise.


1989 ◽  
Vol 26 (9) ◽  
pp. 1657-1666 ◽  
Author(s):  
Harry F. L. Williams ◽  
Michael C. Roberts

The Fraser River has been building its delta into the Strait of Georgia in southwestern British Columbia for about the last 9000 years. This period encompassed a relative sea-level rise of some 13 m. This study concerns the effects of the rise in sea level on the depositional evolution of the delta.The lithostratigraphy of the delta was established by a series of drill cores. Four major lithostratigraphic units were defined: peat, organic-rich silt, interbedded silts and sands, and massive sands. These units were interpreted in terms of the delta's contemporary depositional environments, including peat bog, floodplain, and intertidal zone.Analysis of the delta's depositional architecture and chronology indicates that the delta continued to prograde during the rise in sea level. A marine transgression, accompanied by the landward migration of marine and intertidal facies, did not occur. Growth of the delta during the rise in sea level was accomplished by both vertical accretion and lateral progradation.Vertical-accretion rates during the rise in sea-level averaged 2.4 mm/year and ranged up to about 5.3 mm/year. Lateral progradation of the delta was most rapid in the early stages of growth (9000 – 8000 years ago), when the average rate was 6.5 m/year, and slowest during the period of most rapid sea-level rise, when the rate declined to less than 1 m/year. The progradation rate of 2.4 m/year calculated for the most recent period (2250–present) compares well with estimates based on bathymetric surveys.A revised sea-level curve for the Fraser Lowland region is proposed on the basis of the identification of former sea-level positions in core at the lithologic transitions from tidal-marsh to intertidal deposits. The curve contains a hitherto unknown stillstand that occurred ca 6000 years ago and shows that the mid-Holocene sea-level rise continued until about 2250 years ago.


Sign in / Sign up

Export Citation Format

Share Document