depositional architecture
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 31)

H-INDEX

23
(FIVE YEARS 4)

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7776
Author(s):  
Andrzej Urbaniec ◽  
Anna Łaba-Biel ◽  
Anna Kwietniak ◽  
Imoleayo Fashagba

The Upper Cretaceous complex in the central part of the Carpathian Foreland (southern Poland) is relatively poorly recognized and described. Its formations can be classified as unconventional reservoir due to poor reservoir properties as well as a low recovery factor. The main aim of the article is to expand knowledge with conclusions resulting from the analysis of the latest seismic data with the application of seismic sequence stratigraphy. Moreover, the seismic attributes analysis was utilized. The depositional architecture recognition based on both chronostratigraphic horizons and Wheeler diagram interpretations was of paramount importance. A further result was the possibility of using the chronostratigraphic image for tectonostratigraphic interpretation. Two distinguished tectonostratigraphic units corresponding to megasequences were recognized. A tectonic setting of the analyzed interval is associated with global processes noticed by other authors in other parts of the central European Late Cretaceous basin, but also locally accompanied by evidence of small-scale tectonics. This study fills the gap on the issue of paleogeography in the Late Cretaceous sedimentary basin of the Carpathian Foreland. It presents the first results of detailed reconstruction of the basin paleogeography and an attempt to determine the impact of both eustatic and tectonic factors on sedimentation processes.


Author(s):  
Erin E. Donaghy ◽  
Paul J. Umhoefer ◽  
Michael P. Eddy ◽  
Robert B. Miller ◽  
Taylor LaCasse

Strike-slip faults form in a wide variety of tectonic settings and are a first-order control on the geometry and sediment accumulation patterns in adjacent sedimentary basins. Although the structural and depositional architecture of strike-slip basins is well documented, few studies of strike-slip basins have integrated depositional age, lithofacies, and provenance control within this context. The Chumstick basin formed in central Washington during a regional phase of dextral, strike-slip faulting and episodic magmatism associated with Paleogene ridge-trench interaction along the North America margin. The basin is bounded and subdivided by major strike-slip faults that were active during deposition of the intra-basinal, non-marine Chumstick Formation. We build on the existing stratigraphy and present new, detailed lithofacies mapping, conglomerate clast counts (N = 16; n = 1429), and sandstone detrital zircon analyses (N = 16; n = 1360) from the Chumstick Formation to document changes in sediment provenance, routing, and deposition. These data allow us to reconstruct regional Eocene paleo-drainage systems of Washington and Oregon and suggest that drainage within the Chumstick basin fed a regional river system that flowed to a forearc or marginal basin on the newly accreted Siletzia terrane. More generally, excellent age control from five interbedded tuffs and high sediment accumulation rates allow us to track the evolving sedimentary system over the Formation’s ca. 4−5 m.y. depositional history. This is the first time lithofacies and provenance variations can be constrained at high temporal resolution (0.5−1.5 m.y. scale) for an ancient strike-slip basin and permits a detailed reconstruction of sediment routing pathways and depositional environments. As a result, we can assess how varying sediment supply and accommodation space affects the depositional architecture during strike-slip basin evolution.


2021 ◽  
Vol 91 (1) ◽  
pp. 34-65
Author(s):  
Zoë A. Cumberpatch ◽  
Ian A. Kane ◽  
Euan L. Soutter ◽  
David M. Hodgson ◽  
Christopher A-L. Jackson ◽  
...  

ABSTRACTBehavior of sediment gravity flows can be influenced by seafloor topography associated with salt structures; this can modify the depositional architecture of deep-water sedimentary systems. Typically, salt-influenced deep-water successions are poorly imaged in seismic reflection data, and exhumed systems are rare, hence the detailed sedimentology and stratigraphic architecture of these systems remains poorly understood.The exhumed Triassic (Keuper) Bakio and Guernica salt bodies in the Basque–Cantabrian Basin, Spain, were active during deep-water sedimentation. The salt diapirs grew reactively, then passively, during the Aptian–Albian, and are flanked by deep-water carbonate (Aptian–earliest Albian Urgonian Group) and siliciclastic (middle Albian–Cenomanian Black Flysch Group) successions. The study compares the depositional systems in two salt-influenced minibasins, confined (Sollube basin) and partially confined (Jata basin) by actively growing salt diapirs, comparable to salt-influenced minibasins in the subsurface. The presence of a well-exposed halokinetic sequence, with progressive rotation of bedding, beds that pinch out towards topography, soft-sediment deformation, variable paleocurrents, and intercalated debrites indicate that salt grew during deposition. Overall, the Black Flysch Group coarsens and thickens upwards in response to regional axial progradation, which is modulated by laterally derived debrites from halokinetic slopes. The variation in type and number of debrites in the Sollube and Jata basins indicates that the basins had different tectonostratigraphic histories despite their proximity. In the Sollube basin, the routing systems were confined between the two salt structures, eventually depositing amalgamated sandstones in the basin axis. Different facies and architectures are observed in the Jata basin due to partial confinement.Exposed minibasins are individualized, and facies vary both spatially and temporally in agreement with observations from subsurface salt-influenced basins. Salt-related, active topography and the degree of confinement are shown to be important modifiers of depositional systems, resulting in facies variability, remobilization of deposits, and channelization of flows. The findings are directly applicable to the exploration and development of subsurface energy reservoirs in salt basins globally, enabling better prediction of depositional architecture in areas where seismic imaging is challenging.


Geosciences ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 487
Author(s):  
Manuel Martín-Martín ◽  
Francesco Guerrera ◽  
Rachid Hlila ◽  
Alí Maaté ◽  
Soufian Maaté ◽  
...  

An interdisciplinary study based on lithostratigraphic, biostratigraphic, petrographic and mineralogical analyses has been performed in order to establish the Cenozoic tectono-sedimentary evolution of the El Habt and Ouezzane Tectonic Units (External Intrarif Subzone, External Rif, Morocco). The reconstructed record allowed identification of the depositional architecture and related sedimentary processes of the considered units. The Cenozoic successions were biochronologically defined allowing, at the same time, identification of unconformities and associated stratigraphic gaps. The presence of five unconformities allowed for the definition of the main stratigraphic units arranged in a regressive trend: (1) lower Paleocene interval (Danian p.p.) assigned to a deep basin; (2) Eocene interval (lower Ypresian-lower Bartonian p.p.) from a deep basin to an external carbonate-siliceous platform; (3) lower Rupelian-upper Chattian p.p. interval deposited on unstable slope with turbidite channels passing upward to an external siliciclastic platform; (4) Burdigalian p.p. interval from a slope; (5) Langhian-Serravallian p.p. interval from slope to external platform realms. The petrography of the arenites and calcarenites allowed for the identification of the supplies derived from erosion of a recycled orogen (transitional and quartzose subtypes). The clay-mineralogy analysis indicates an unroofing (first erosion of Cretaceous terrains followed by upper Jurassic rocks) always accomplished by erosion of Cenozoic terrains. Several tectofacies checked in some stratigraphic intervals seem to indicate the beginning of deformation of the basement generating gentle folds and first activation of blind thrusts, mainly during the Paleogene. A preorogenic tectonic framework is considered as responseto the generalized tectonic inversion (from extension to compression) as frequently registered in the central-western peri-Mediterranean areas. The large volumes of reworked terrigeneous supply during the latest Oligocene-Miocene p.p. indicates the beginningsof the synorogenic sedimentation (foredeep stage of the basins) controlled by active tectonics.


Sign in / Sign up

Export Citation Format

Share Document