Diagenesis of Buried Chrome Ore Processing Residue

Author(s):  
Bruce M. Sass ◽  
Daniel T. Kremser ◽  
Mohit Bhargava ◽  
Jody Lipps
Keyword(s):  
2019 ◽  
Vol 7 ◽  
pp. 196-206
Author(s):  
E.V. Chernousenko ◽  
◽  
I.N. Vishnyakova ◽  
Yu.S. Kameneva ◽  
Yu.N. Neradovskiy ◽  
...  

2019 ◽  
Vol 55 (5) ◽  
pp. 832-838 ◽  
Author(s):  
T. N. Matveeva ◽  
V. V. Getman ◽  
M. V. Ryazantseva ◽  
A. Yu. Karkeshkina ◽  
L. B. Lantsova

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 342
Author(s):  
Holger Lieberwirth ◽  
Lisa Kühnel

Confined bed comminution in high-pressure grinding rollers (HPGRs) and vertical roller mills (VRMs) was previously used preferably for grinding comparably homogeneous materials such as coal or clinker. Meanwhile, it started to complement or even replace tumbling mills in ore beneficiation with ore and gangue particles of rather different breakage behaviors. The selectivity in the comminution of a mixture of particles with different strengths but similar particle size distribution (PSD) of the constituents in a particle bed was investigated earlier. The strength of a material is, however, also a function of particle size. Finer particles tend to be more competent than coarser ones of the same material. In industrial ore processing using confined bed comminution, this effect cannot be neglected but even be exploited to increase efficiency. This paper presents research results on this topic based on experimental investigations with model materials and with natural particles, which were stressed in a piston–die press. It appeared that the comminution result substantially depends on the material characteristics, the composition of the mixture and the PSD of the constituents. Conclusions will be drawn for the future applications of selective comminution in mineral processing.


Sign in / Sign up

Export Citation Format

Share Document