Frequency Optimization Model for a Public Traffic Scheduling System

ICCTP 2009 ◽  
2009 ◽  
Author(s):  
C. Xu ◽  
F. Wu ◽  
Y. Han ◽  
H. Gao ◽  
Y. Zhang ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Danwen Bao ◽  
Songyi Hua

This study’s goal is to reduce the number of flights and alleviate congestion in hub airports. It proposes a flight time and frequency-optimization method for multiairport systems. A flight time and frequency-optimization model for multiairport system operation is created to minimize loss of passenger trip time. A k-means clustering algorithm is designed to solve the model and calculate indexes such as flight time and frequency, passenger trip-time loss, and distribution of airplane models and quantity. The calculation results of an example in China are as follows. Under multiairport system operation mode, passenger demands are divided into 7 categories; 11 flights satisfy all passenger demands; passenger trip-time loss is 129,573 min; and the average passenger load factor is 90.1%. Under an independent operation mode, passenger demands are divided into 8 categories; 13 flights satisfy all passenger demands; passenger trip-time loss is 173,705 min; and the average passenger load factor is 87.4%. The multiairport system operation mode not only improves passenger trip efficiency but also benefits airlines by improving the passenger load factor and reducing flights. Moreover, comparative analysis of a genetic algorithm versus a clustering algorithm further proves the accuracy of the clustering algorithm.


Author(s):  
SAURABH KUMAR ◽  
RAJIV DANDOTIYA ◽  
RAJESH KUMAR ◽  
UDAY KUMAR

Many offshore oil and gas installations in the North Sea are approaching the end of their designed lifetimes. Technological improvements and higher oil prices have developed favorable conditions for more oil recovery from these existing installations. However, in most cases, an extended oil production period does not justify investment in new installations. Therefore cost-effective maintenance of the existing platform infrastructure is becoming very important. In this paper, an inspection frequency optimization model has been developed which can be used effectively by the inspection and maintenance personnel in the industry to estimate the number of inspections/optimum preventive maintenance time required for a degrading component at any age or interval in its lifecycle at a minimum total maintenance cost. The model can help in planning inspections and maintenance intervals for different components of the platform infrastructure. The model has been validated by a case study performed on flowlines installed on the top side of an offshore oil and gas platform in the North Sea. Reliability analysis has been carried out to arrive at the best inspection frequency for the flowline segments under study.


1984 ◽  
Author(s):  
M. A. Montazer ◽  
Colin G. Drury
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document