Research on Leakage Control of Water Distribution Network Based on Pressure-Driven Demand Model

Author(s):  
Jinliang Gao ◽  
Kui Chang ◽  
Min Zhang ◽  
Chengzhi Zheng ◽  
Wenyan Wu
10.29007/z3hq ◽  
2018 ◽  
Author(s):  
Fernando Das Graças Braga Da Silva ◽  
Thaisa Dias Goulart ◽  
Regina Mambeli Barros

The calibration of water distribution networks is one way to perform such procedures in hydraulic models, but several are the difficulties encountered in calibrating a real network. This work proposes the improvement of modules of the calibration method proposed by Silva (2003), where using the genetic algorithm (GA) search tool, the author calibrates a real water distribution network of a Brazilian city, adjusting parameters mainly from roughness and coefficient of leakage. The enhancement of GA is the introduction of a new decision variable, the nodal demand, which assigns demand values to nodes according to the pressure-driven demand model of Tucciarelli, Criminisi and Termini (1999). The tests of the GAs implemented are tested for this real water distribution network presented by Silva (2003). The effect of the improvement on the calibration results was significant for the network, but the need for more in-depth studies, which are of course required for the application of new algorithms in real-scale networks.


2015 ◽  
Vol 18 (1) ◽  
pp. 4-22 ◽  
Author(s):  
Chiara M. Fontanazza ◽  
Vincenza Notaro ◽  
Valeria Puleo ◽  
Gabriele Freni

Water demand is the driving force behind hydraulic dynamics in water distribution systems. Consequently, it is crucial to accurately estimate the actual water use to develop reliable simulation models. In this study, copula-based multivariate analysis was proposed and used for demand prediction for a given return period. The analysis was applied to water consumption data collected in the water distribution network of Palermo (Italy). The approach produced consistent demand patterns and could be a powerful tool when coupled with water distribution network models for design or analysis problems. The results were compared with those obtained using a classical water demand model, the Poisson rectangular pulse (PRP) model. The multivariate consumption data statistical analysis results were always higher than those of the PRP model but the copula-based method maintained the daily water volume of actual consumptions and provided maximum daily consumption that increased with the return period.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2969 ◽  
Author(s):  
Yu Shao ◽  
Yanxi Yu ◽  
Tingchao Yu ◽  
Shipeng Chu ◽  
Xiaowei Liu

Apart from water quality, leakage control and energy consumption management are the most concerning challenges for water treatment plants (WTPs). The joint scheduling of pumps and pressure reducing valves (PRVs) in the water distribution network can reduce excessive pressure and distribute pressure more evenly, which achieves comprehensive reduction of leakages and energy consumption. Taking into account the main shortcomings of the commonly used methods, such as scheduling pumps or PRVs separately, or optimizing PRV settings when their position is given, etc., this paper has taken the PRV (position and setting) and the working status of variable speed pumps (VSPs) as decision variables and the cost savings contributed by leakage reduction and energy consumption savings as the objective function, which maximized the economic benefits brought by PRV and/or VSP scheduling. A genetic algorithm (GA) was used to optimize the solution under multiple working conditions. The performance of three control strategies (PRV-only scheduling, VSP-only scheduling, and joint scheduling of PRVs and VSPs) are compared to each other based on a small network. Joint scheduling has achieved the best economic benefits in reducing the gross cost (contributed by leakage and energy consumption) of the three control strategies, which results in a leakage reduction of 33.4%, an energy consumption reduction of 25.4%, and a total cost reduction of 33.1%, when compared to the original network, and saving about 1148 m 3 water (7% of the original consumption) and 722 kWh electric energy (25.4% of the original consumption) per day.


10.29007/lpck ◽  
2018 ◽  
Author(s):  
Enrico Creaco ◽  
Armando Di Nardo ◽  
Carlo Giudicianni ◽  
Roberto Greco ◽  
Giovanni Francesco Santonastaso

This paper aims to explore the suitability of compact resilience metrics for application to partitioned water distribution networks (WDNs). WDN partitioning represents a different test from the usual reliability tests performed in the scientific literature, in which the operation of the WDN is unperturbed, or marginally perturbed (e.g., by segment isolation or demand amplification). The creation of permanent district metering areas (DMAs), which is carried out through the simultaneous closure of numerous links, represents, instead, a larger and permanent perturbation that deserves special attention. In this analysis, two metrics, namely the Global Resilience Failure (GRF) and the energy efficiency indices, were compared in pressure-driven approach with WDN performance indicators. The results in a real WDN, which is partitioned in a growing number of DMAs, proved that both the GRF is more sensitive to the weaknesses arisen in the partitioning processes.


2017 ◽  
Vol 16 (5) ◽  
pp. 1071-1079 ◽  
Author(s):  
Andrei-Mugur Georgescu ◽  
Sanda-Carmen Georgescu ◽  
Remus Alexandru Madularea ◽  
Diana Maria Bucur ◽  
Georgiana Dunca

Sign in / Sign up

Export Citation Format

Share Document