Incorporation of Water Distribution Network Costs in Water Supply System Design Highlighting the Strength of Raster GIS Modelling

Author(s):  
D.M.S.S. Dissanayake ◽  
N.T.S. Wijesekera ◽  
2017 ◽  
Vol 17 (12) ◽  
pp. 2109-2123 ◽  
Author(s):  
Chiara Arrighi ◽  
Fabio Tarani ◽  
Enrico Vicario ◽  
Fabio Castelli

Abstract. Floods cause damage to people, buildings and infrastructures. Water distribution systems are particularly exposed, since water treatment plants are often located next to the rivers. Failure of the system leads to both direct losses, for instance damage to equipment and pipework contamination, and indirect impact, since it may lead to service disruption and thus affect populations far from the event through the functional dependencies of the network. In this work, we present an analysis of direct and indirect damages on a drinking water supply system, considering the hazard of riverine flooding as well as the exposure and vulnerability of active system components. The method is based on interweaving, through a semi-automated GIS procedure, a flood model and an EPANET-based pipe network model with a pressure-driven demand approach, which is needed when modelling water distribution networks in highly off-design conditions. Impact measures are defined and estimated so as to quantify service outage and potential pipe contamination. The method is applied to the water supply system of the city of Florence, Italy, serving approximately 380 000 inhabitants. The evaluation of flood impact on the water distribution network is carried out for different events with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analysed in order to estimate their residual functionality and to simulate failure scenarios. Results show that in the worst failure scenario (no residual functionality of the lifting station and a 500-year flood), 420 km of pipework would require disinfection with an estimated cost of EUR 21 million, which is about 0.5 % of the direct flood losses evaluated for buildings and contents. Moreover, if flood impacts on the water distribution network are considered, the population affected by the flood is up to 3 times the population directly flooded.


Author(s):  
Marianna D'Ercole ◽  
Maurizio Righetti ◽  
Gema Raspati ◽  
Paolo Bertola ◽  
Rita Maria Ugarelli

The management of existing water distribution system (WDS) is challenged by ageing of infrastructure, population growth, increasing of urbanization, climate change impacts and environmental pollution. Therefore, there is a need for integrated solutions that support decision makers to plan today, while taking into account the effect of these factors in the mid and long term. The paper is part of a more comprehensive project, where advanced hydraulic analysis for WDS is coupled with a dynamic resources input-output analysis model. The proposed modeling solution can be used to optimize the performance of a water supply system while considering also the energy consumption and consequently the environmental impacts. Therefore, as a support tool in the management of a water supply system also in the intervention planning. Here a possible application is presented for rehabilitation/replacement planning while maximizing the network mechanical reliability and minimizing risk of unsupplied demand and pressure deficit, under given economic constraints.


Author(s):  
Marianna D'Ercole ◽  
Maurizio Righetti ◽  
Gema Raspati ◽  
Paolo Bertola ◽  
Rita Maria Ugarelli

The management of existing water distribution system (WDS) is challenged by ageing of infrastructure, population growth, increasing of urbanization, climate change impacts and environmental pollution. Therefore, there is a need for integrated solutions that support decision makers to plan today, while taking into account the effect of these factors in the mid and long term. The paper is part of a more comprehensive project, where advanced hydraulic analysis for WDS is coupled with a dynamic resources input-output analysis model. The proposed modeling solution can be used to optimize the performance of a water supply system while considering also the energy consumption and consequently the environmental impacts. Therefore, as a support tool in the management of a water supply system also in the intervention planning. Here a possible application is presented for rehabilitation/replacement planning while maximizing the network mechanical reliability and minimizing risk of unsupplied demand and pressure deficit, under given economic constraints.


Author(s):  
Chiara Arrighi ◽  
Fabio Tarani ◽  
Enrico Vicario ◽  
Fabio Castelli

Abstract. Floods cause damage to people, buildings and infrastructures. Due to their usual location near rivers, water utilities are particularly exposed; in case of flood, the inundation of the facility can damage equipment and cause power outages. Such impact leads to costly repairs, disruptions of service, hazardous situations for personnel and public health advisories. In this work, we present an analysis of direct and indirect damages of a drinking water supply system considering the hazard of a riverine flooding as well as the exposure and vulnerability of the system components (i.e. pipes, junctions, lifting stations etc.). The method is based on the combination of a flood model and an EPANET-based piping network model implementing Pressure-Driven Demand, which is more appropriate when modeling water distribution networks with many off-line nodes. The two models are linked by a semi-automated GIS procedure. The evaluation of flood impact on the aqueduct network is carried out for flood scenarios with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analyzed in order to determine their residual functionality and simulate failure scenarios. Impact metrics are defined to measure service outage and potential pipe contamination. The method is applied to the water supply system of the city of Florence (Italy), serving approximately 385 000 inhabitants. Results show that for the worst failure scenario 420 km of pipeworks would require flushing and disinfection with an estimated cost of 21 Mio €, which is about 0.5 % of the direct flood losses evaluated for buildings and contents.


2017 ◽  
Vol 46 (1) ◽  
pp. 28-35 ◽  
Author(s):  
G. M. G Farok

Non-revenue Water (NRW) is an important component of commercial water system management. NRW is the result of pipelines leakage, improper, illegal service connections and theft water. NRW contributes system loss that is a buzzword. Actually, NRW is uncounted water that has been produced but it is confirmed to be “lost” before it consumes the customer. This matter agitates for all concern and specially it affects the whole economy. Dhaka Water Supply and Sewerage Authority (DWASA) is one of the main utilities in Dhaka City and it is the mostimportant sector of the Government of Bangladesh. The potable water distribution network has been installed at the whole area of the city and it covers periphery of the city and its extension is going from N. Gonj to Tongi as well as surrounding area of this city. Non-revenue water surveys were conducted on specific fields and areas that were selected randomly. It would be gradually becoming a serious issue affecting the interest of all concerned andwould be one of the major crises to be solved with techno-managerial concept.


2005 ◽  
Vol 5 (2) ◽  
pp. 31-38
Author(s):  
A. Asakura ◽  
A. Koizumi ◽  
O. Odanagi ◽  
H. Watanabe ◽  
T. Inakazu

In Japan most of the water distribution networks were constructed during the 1960s to 1970s. Since these pipelines were used for a long period, pipeline rehabilitation is necessary to maintain water supply. Although investment for pipeline rehabilitation has to be planned in terms of cost-effectiveness, no standard method has been established because pipelines were replaced on emergency and ad hoc basis in the past. In this paper, a method to determine the maintenance of the water supply on an optimal basis with a fixed budget for a water distribution network is proposed. Firstly, a method to quantify the benefits of pipeline rehabilitation is examined. Secondly, two models using Integer Programming and Monte Carlo simulation to maximize the benefits of pipeline rehabilitation with limited budget were considered, and they are applied to a model case and a case study. Based on these studies, it is concluded that the Monte Carlo simulation model to calculate the appropriate investment for the pipeline rehabilitation planning is both convenient and practical.


2013 ◽  
Vol 438-439 ◽  
pp. 1551-1554
Author(s):  
Shuang Hua He

Conventional demand-driven models of water supply system are formulated under the assumption that nodal demands are statistic constants, which is not suitable for the cases where nodal pressure is not sufficient for supplying the required demand. An efficient approach for pressure-dependent demand analysis was developed to simulate the hydraulic states of the network for low pressure scenarios, and the mean-first-order-second-moment method was introduced to do the functional reliability analysis of post-earthquake water supply system, which can be applied to further study for seismic performance control analysis of water distribution system.


Author(s):  
Ricardo Soto ◽  
Broderick Crawford ◽  
Rodrigo Olivares ◽  
Carlos Castro ◽  
Pía Escárate ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document