Assessing the Impact of Climate Change on the U.S. East Coast Hurricane Hazard: Wind and Rain

Author(s):  
Lauren Mudd ◽  
Yue Wang ◽  
Chris Letchford ◽  
David Rosowsky
2014 ◽  
Vol 15 (3) ◽  
pp. 04014001 ◽  
Author(s):  
Lauren Mudd ◽  
Yue Wang ◽  
Chris Letchford ◽  
David Rosowsky

2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Swagata Bisoi ◽  
Sumanta Haldar

This study assesses the serviceability and fatigue limit states of the offshore wind turbine (OWT) founded in clay incorporating the impact of climate change. Two different offshore locations at east and west coasts in India are chosen. The ensemble of future time series of wind speed, wave height, and period is forecasted using statistical downscaling model (SDSM) at the regional level using the general circulation model (GCM) corresponding to the A1B, A2, and B1 emission scenarios. The downscaling model is calibrated by comparing simulations driven by the National Centers for Environmental Prediction (NCEP) high-resolution data and station data. Responses of OWT are obtained from dynamic analysis in a time domain using finite element (FE). The tower and monopile are modeled as Euler–Bernoulli beam, and soil resistance is modeled as American Petroleum Institute (API)-based p–y springs. The study shows future wind and wave loads are site specific, and it increases in the west coast and decreases in the east coast of India due to climate change. The simulation shows a substantial increase in future wind energy production at west coast compared to that of the east coast; however, safety margin considering serviceability and fatigue life decreases which requires modification in the design.


Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


2012 ◽  
Vol 20 (1) ◽  
pp. 108-115 ◽  
Author(s):  
Wu Weiwei ◽  
Xu Haigen ◽  
Wu Jun ◽  
Cao Mingchang

Sign in / Sign up

Export Citation Format

Share Document