Effect of Raker Piles in Lateral Load Capacity of Laterally Loaded Pile Group

Author(s):  
K. Muthukkumaran ◽  
B. Aravind Kumar
2020 ◽  
Vol 20 (4) ◽  
pp. 207-217
Author(s):  
Yongjin Choi ◽  
Jaehun Ahn

The <i>p-y</i> curve method and </i>p</i>-multiplier (<i>P<sub>m</sub></i>), which implies a group effect, are widely used to analyze the nonlinear behaviors of laterally loaded pile groups. Factors affecting <i>P<sub>m</sub></i> includes soil properties as well as group pile geometry and configuration. However, research on the change in <i>P<sub>m</sub></i> corresponding to soil properties has not been conducted well. In this study, in order to evaluate the effect of soil properties on the group effect in a laterally-loaded pile group installed in sandy soil, numerical analysis for a single pile and 3×3 pile group installed in loose, medium, and dense sand, was performed using the 3D numerical analysis program, Plaxis 3D. Among the factors considered in this study, the column location of the pile was the most dominant factor for <i>P<sub>m</sub></i>. The effect of the sand property change on <i>P<sub>m</sub></i> was not as significant as that of the column location of the pile. However, as the sand became denser and the friction angle increased, the group effect increased, leading to a decrease in <i>P<sub>m</sub></i> of approximately 0.1. This trend was similar to the result reported in a previous laboratory-scale experimental study.


Author(s):  
Kyle M. Rollins ◽  
Andrew E. Sparks ◽  
Kris T. Peterson

Static and dynamic (statnamic) lateral load tests were performed on a full-scale 3 × 3 pile group driven in saturated low-plasticity silts and clays. The 324-mm outside diameter steel pipe piles were attached to a reinforced concrete pile cap (2.74 m square in plan and 1.21 m high), which created an essentially fixed-head end constraint. A gravel backfill was compacted in place on the back side of the cap. Lateral resistance was therefore provided by pile-soil-pile interaction as well as by base friction and passive pressure on the cap. In this case, passive resistance contributed about 40 percent of the measured static capacity. The measured resistance was compared with that computed by several techniques. The log-spiral method provided the best agreement with measured resistance. Estimates of passive pressure computed using the Rankine or GROUP p-y curve methods significantly underestimated the resistance, whereas the Coulomb method overestimated resistance. The wall movement required to fully mobilize passive resistance in the dense gravel backfill was approximately 0.06 times the wall height, which is in good agreement with design recommendations. The p-multipliers developed for the free-head pile group provided reasonable estimates of the pile-soil-pile resistance for the fixed-head pile group. Default p-multipliers in the program GROUP led to a 35 percent overestimate of pile capacity. Overall dynamic resistance was typically 100 to 125 percent higher than static; however, dynamic passive pressure resistance was over 200 percent higher than static.


Sign in / Sign up

Export Citation Format

Share Document