scholarly journals Effect of Relative Density on Lateral Load Capacity of a Cyclic Laterally Loaded Pile in Sandy Soil

2016 ◽  
Vol 32 (4) ◽  
pp. 41-49
Author(s):  
Sung-Ha Baek ◽  
Joon-Young Kim ◽  
Seung-Hwan Lee ◽  
Choong-Ki Chung
2021 ◽  
Vol 39 (2A) ◽  
pp. 167-179
Author(s):  
Mohammed A. Al-Neami ◽  
Husam H. Baqir ◽  
Saif H. Hameed

 This paper displays an empirical work of a micropile inserted in the dry river sand with different length to diameter (L/D) ratios (13, 15, 27, 42, and 50). The experimental work is executed on the models of micropile to imitate the side force motion, acting on the micropile head to explain the micropile conduct due to the different side force rates. Forty-five models are tested (eighteen models for short pile, eighteen model for long pile and nine models for intermediate) embedded in different relative densities of sandy soil.  The results illustrate that for the same relative density, the lateral load is decreased when the moving rate increasing from (3.37 to 3.97 then 4.59 mm/min), that means frequency (0.55 to 0.65 then 0.75 Hz), respectively. At the same moving rate of horizontal loading, the value of lateral load increased with the increase of horizontal displacement until reach to the 12mm at the end of the test. The duration of the test decreased with the increase of moving rate and the maximum duration of the test recorded for micropile model has (L/D) of 50 with 75% relative density when the moving rate of lateral load is 3.37 mm/min. Also, it is found that the duration of the test increases when the relative density increased at the same moving rate.


Author(s):  
Sung-Ha Baek ◽  
Joon-Young Kim ◽  
Seung-Hwan Lee ◽  
Choong-Ki Chung

Pile foundations installed to support offshore structures are primarily subjected to cyclic lateral loads due to wind, and waves. The p-y curve method, which represents a nonlinear relation between soil-pile reaction and lateral pile deflection, has been used to design cyclic laterally loaded piles. Recommended by the American Petroleum Institute (API) [10] and generally adopted to evaluate the behavior of static and cyclic laterally loaded piles installed in sandy soils, the API p-y curve contains a reduction factor for the initial horizontal subgrade modulus in order to take cyclic effects into consideration. When pile foundations are subjected to cyclic lateral loads, however, the initial horizontal subgrade modulus can both decrease and increase according to the relative density of the soil. In this paper, a series of cyclic lateral load model tests were performed on a preinstalled aluminum flexible pile to examine its cyclic lateral response under different relative density conditions. Model piles were embedded in sandy soils with relative densities of 40%, 70%, and 90% and were subjected to static as well as cyclic lateral loads. From the test results, cyclic p-y backbone curves were derived and compared with static p-y curves in identical soil conditions. Test results showed that the initial horizontal subgrade modulus increased for the model pile installed in sandy soil of 40% relative density, while decreased in relative densities of 70% and 90%. In addition, the infinite depth, above which cyclic lateral loads were supported, was evaluated and the test results were compared with the API p-y curve.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Bingxiang Yuan ◽  
Rui Chen ◽  
Jun Teng ◽  
Yixian Wang ◽  
Wenwu Chen ◽  
...  

Two scale-model tests were separately conducted in standard Toyoura sand with relative density of 50% and 80%. The effect of sand relative density on pile-soil interaction was investigated through the response of a laterally loaded pile and the sand movement around the pile. At a displacement of 3.6 mm of the loading point, the applied loads in loose and dense sand were 4.775 N and 21.025 N, respectively, and the maximum moment and soil resistance of the pile in dense sand were over 4 times those in loose sand. However, the deflection of the pile in dense sand was less than that in loose sand; additionally, the depth of zero deflection in dense sand was also less than that in loose sand. At the same time, the maximum displacements of loose sand in the vertical profile and ground surface were over 1.5 times those of dense sand. These characteristics occurred because the relative stiffness ratio of soil and pile increased as the relative density increased, which caused the behavior of the pile in dense sand to be elastic rather than rigid. In addition, the compacted sand particles did not move as easily as the loose sand particles.


2021 ◽  
Author(s):  
Jasinthan Arulanantham

The objective of this research is to conduct an optimized design of drilled shaft foundation for noise barrier walls. A non-linear three-dimensional (3D) finite element method (FEM) program, Plaxis 3D, is used to investigate the behaviour of laterally loaded shafts. Two published cases are used to calibrate the modelling method and validate the numerical results. In the case of a field test performed by Helmers (1997), FEM results agree very well with field tests in terms of ultimate load and deflection curves. In the laboratory test conducted by Uncuoglu & Laman (2011) case, numerical results agree well with their results except the soil-shaft interface modelling part. The Plaxis 3D embedded pile model tends to overestimate the lateral load capacity of a smooth pile. Though it is satisfactory in modelling a pile with a “rough” surface. Two theoretical formulas in estimating lateral capacity of piles are also compared with the FEM results. It is found that Broms’s (1964b) theory for cohesionless soils has underestimated the lateral load capacities and Brinch-Hansen’s (1961) theory provides a more accurate estimation. In summary, 3-D FEM is able to accurately simulate the behaviour of laterally loaded drilled shafts in soil.


2021 ◽  
Author(s):  
Jasinthan Arulanantham

The objective of this research is to conduct an optimized design of drilled shaft foundation for noise barrier walls. A non-linear three-dimensional (3D) finite element method (FEM) program, Plaxis 3D, is used to investigate the behaviour of laterally loaded shafts. Two published cases are used to calibrate the modelling method and validate the numerical results. In the case of a field test performed by Helmers (1997), FEM results agree very well with field tests in terms of ultimate load and deflection curves. In the laboratory test conducted by Uncuoglu & Laman (2011) case, numerical results agree well with their results except the soil-shaft interface modelling part. The Plaxis 3D embedded pile model tends to overestimate the lateral load capacity of a smooth pile. Though it is satisfactory in modelling a pile with a “rough” surface. Two theoretical formulas in estimating lateral capacity of piles are also compared with the FEM results. It is found that Broms’s (1964b) theory for cohesionless soils has underestimated the lateral load capacities and Brinch-Hansen’s (1961) theory provides a more accurate estimation. In summary, 3-D FEM is able to accurately simulate the behaviour of laterally loaded drilled shafts in soil.


2020 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Muhammad Bilal Adeel ◽  
Muhammad Asad Jan ◽  
Muhammad Aaqib ◽  
Duhee Park

The behavior of laterally loaded pile groups is usually accessed by beam-on-nonlinear-Winkler-foundation (BNWF) approach employing various forms of empirically derived p-y curves and p-multipliers. Averaged p-multiplier for a particular pile group is termed as the group effect parameter. In practice, the p-y curve presented by the American Petroleum Institute (API) is most often utilized for piles in granular soils, although its shortcomings are recognized. In this study, we performed 3D finite element analysis to develop p-multipliers and group effect parameters for 3 × 3 to 5 × 5 vertically squared pile groups. The effect of the ratio of spacing to pile diameter (S/D), number of group piles, varying friction angle (φ), and pile fixity conditions on p-multipliers and group effect parameters are evaluated and quantified. Based on the simulation outcomes, a new functional form to calculate p-multipliers is proposed for pile groups. Extensive comparisons with the experimental measurements reveal that the calculated p-multipliers and group effect parameters are within the recorded range. Comparisons with two design guidelines which do not account for the pile fixity condition demonstrate that they overestimate the p-multipliers for fixed-head condition.


Sign in / Sign up

Export Citation Format

Share Document