Numerical Study of Deformation Behavior for a Geosynthetic-Reinforced Soil Bridge Abutment under Static Loading

Author(s):  
Yewei Zheng ◽  
Patrick J. Fox ◽  
P. Benson Shing
2021 ◽  
Vol 11 (23) ◽  
pp. 11226
Author(s):  
Myoung-Soo Won ◽  
Christine Patinga Langcuyan

The geosynthetic reinforced soil (GRS) bridge abutment with a staged-construction full height rigid (FHR) facing and an integral bridge (IB) system was developed in Japan in the 2000s. This technology offers several advantages, especially concerning the deformation behavior of the GRS-IB abutment. In this study, the effects of GRS in the bridge abutment with FHR facing and the effects of geosynthetics reinforcement length on the deformation behavior of the GRS–IB are presented. The numerical models are analyzed using the finite element method (FEM) in Plaxis 2D program. The results showed that the GRS–IB model exhibited the least lateral displacements at the wall facing compared to those of the IB model without geosynthetics reinforcement. The geosynthetics reinforcement in the bridge abutment with FHR facing has reduced the vertical displacement increments by 4.7 times and 1.3 times (maximum) after the applied general traffic loads and railway loads, respectively. In addition, the numerical results showed that the increase in the length-to-height (L/H) ratio of reinforcement from 0.3H to 1.1H decreases the maximum lateral displacements by 29% and the maximum vertical displacements by 3% at the wall facing by the end of construction. The effect of the reinforcement length on the wall vertical displacements is minimal compared to the effect on the wall lateral displacements.


Sign in / Sign up

Export Citation Format

Share Document