Seismic Stability Analysis of Soil Slopes Using Soil Nails

Author(s):  
Pankaj Rawat ◽  
Kaustav Chatterjee
2015 ◽  
Vol 117 (22) ◽  
pp. 12-17
Author(s):  
Md. MahmudSazzad ◽  
Swapon Mazumder ◽  
Md. Moniruzzaman Moni

Géotechnique ◽  
2021 ◽  
pp. 1-41
Author(s):  
Mohammad Hassan Baziar ◽  
Alireza Ghadamgahi ◽  
Andrew John Brennan

Seismic design of soil-nailed walls requires demonstrations of tolerable ranges of wall movements, especially when a surcharge load exists near the wall. In this study, the effect of surcharge location on seismically induced wall movements was investigated using four centrifuge tests. The axial tensile forces, developed along the soil nails during the seismic loadings, were also measured during the tests. At 50g centrifugal acceleration, model tests represented a 12-m-high prototype wall reinforced with five rows of soil nails. To apply a surcharge stress of 30 kPa at the specified location relative to the wall for each model test, a rigid footing was placed on the soil surface. The model soil-nailed walls were subjected to three successive earthquake motions. Surprisingly, it was found that the model wall with the footing located behind the soil-nailed region experienced the largest seismic movements, even more than when the footing was directly behind the wall. Further, the tests showed that the lower soil nails played a key role in the wall stability during earthquake shaking, acting as a pivot for the pre-collapse cases tested, whereas the upper soil nails needed to be sufficiently extended to properly contribute to the seismic stability of the wall.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Hua-Fu Pei ◽  
Chao Li ◽  
Hong-Hu Zhu ◽  
Yu-Jie Wang

In the past few decades, slope stability analysis using numerical methods is becoming a hot issue, but it is based on extremely ideal assumptions. Soil nailing technique, as one of the most cost-effective reinforcing methods, has already been widely used for reinforcing slopes. In this study, to evaluate the safety factor of a slope, the strains on soil nails were measured by fiber Bragg grating (FBG) sensor. Strains along soil nails in the same cross section of a slope can be computed using the measured wavelength shifts of FBG sensors. In order to evaluate the stability of a slope, an optimal model was proposed to search the potential slip surfaces based on measured strain values. Maximum sum of strains on soil nails at different elevations of the same cross section was taken as the objective. Positions of soil nails, circular slip surface, and boundary conditions of the soil nails were summarized and taken as constraints. Finally, safety factors can be computed using the searched slip surface regarding the axial stress of soil nails. This method combines the limit equilibrium methods with measured axial strains on site which can reflect the actual condition of field slopes.


Sign in / Sign up

Export Citation Format

Share Document