Research on Reliability of Traffic Signal Coordination Control for Urban Artery

CICTP 2019 ◽  
2019 ◽  
Author(s):  
Chunting Nie ◽  
Jianjun Shi ◽  
Qinghai Lin
2020 ◽  
Vol 6 ◽  
pp. e319
Author(s):  
Haitao Xu ◽  
Zuozhang Zhuo ◽  
Jing Chen ◽  
Xujian Fang

As an effective method to alleviate traffic congestion, traffic signal coordination control has been applied in many cities to manage queues and to regulate traffic flow under oversaturated traffic condition. However, the previous methods are usually based on two hypotheses. One is that traffic demand is constant. The other assumes that the velocity of vehicle is immutable when entering the downstream section. In the paper, we develop a novel traffic coordination control method to control the traffic flow along oversaturated two-way arterials without both these hypotheses. The method includes two modules: intersection coordination control and arterial coordination control. The green time plan for all intersections can be obtained by the module of intersection coordination control. The module of arterial coordination control can optimize offset plan for all intersections along oversaturated two-way arterials. The experiment results verify that the proposed method can effectively control the queue length under the oversaturated traffic state. In addition, the delay in this method can be decreased by 5.4% compared with the existing delay minimization method and 13.6% compared with the traffic coordination control method without offset optimization. Finally, the proposed method can balance the delay level of different links along oversaturated arterial, which can directly reflect the efficiency of the proposed method on the traffic coordination control under oversaturated traffic condition.


2012 ◽  
Vol 241-244 ◽  
pp. 2031-2037 ◽  
Author(s):  
Hao Wang ◽  
Yun Xiang Liu

In traditional traffic signal coordination control, all intersections are shared a common cycle and have fixed offsets in one sub-area. The range of sub-area is normally fixed, plan switching is difficult, and the reaction to the traffic problem is slow. In this paper, a self-organized dynamic control strategy is proposed. it decomposes the network optimization into overlapped and interactive problems between Basic Coordination Units (BCU). It presents an interaction-forecast model among intersections, each intersection not only considers its own benefit, but also takes downstream intersections into account. Multi-scenarios simulation shows it works well in all saturation degrees, reduces total delay around 8% to 12.3%.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Ciyun Lin ◽  
Bowen Gong

This study presents methods of transit signal priority without transit-only lanes for a transit-based emergency evacuation in a sudden-onset disaster. Arterial priority signal coordination is optimized when a traffic signal control system provides priority signals for transit vehicles along an evacuation route. Transit signal priority is determined by “transit vehicle arrival time estimation,” “queuing vehicle dissipation time estimation,” “traffic signal status estimation,” “transit signal optimization,” and “arterial traffic signal coordination for transit vehicle in evacuation route.” It takes advantage of the large capacities of transit vehicles, reduces the evacuation time, and evacuates as many evacuees as possible. The proposed methods were tested on a simulation platform with Paramics V6.0. To evaluate and compare the performance of transit signal priority, three scenarios were simulated in the simulator. The results indicate that the methods of this study can reduce the travel times of transit vehicles along an evacuation route by 13% and 10%, improve the standard deviation of travel time by 16% and 46%, and decrease the average person delay at a signalized intersection by 22% and 17% when the traffic flow saturation along an evacuation route is0.8<V/C≤1.0andV/C>1.0, respectively.


Sign in / Sign up

Export Citation Format

Share Document