scholarly journals Consensus-Based Rock Glacier Inventorying in the Torngat Mountains, Northern Labrador

2021 ◽  
Author(s):  
Robert G. Way ◽  
Yifeng Wang ◽  
Alexandre R. Bevington ◽  
Philip P. Bonnaventure ◽  
Jake R. Burton ◽  
...  
Keyword(s):  
1972 ◽  
Vol 60 (3) ◽  
pp. 467-487 ◽  
Author(s):  
Victoria Guiter
Keyword(s):  

CATENA ◽  
2021 ◽  
Vol 206 ◽  
pp. 105562
Author(s):  
Nicoletta Cannone ◽  
Silvia Piccinelli

1987 ◽  
Vol 33 (115) ◽  
pp. 300-310 ◽  
Author(s):  
T.J.H. Chinn ◽  
A. Dillon

Abstract“Whisky Glacier” on James Ross Island, Antarctic Peninsula, comprises anévéand clean ice trunk surrounded by an extensive area of debris-covered ice resembling a rock glacier. The debris-free trunk of the glacier abuts abruptly against the broad, totally debris-covered tongue at a number of concentric zones where debris-laden beds crop out at the surface in a manner similar to the “inner moraine” formations of many polar glaciers.Ice structures and foliation suggest that “Whisky Glacier” is a polythermal glacier which is wet-based under the debris-free zone, and dry-based under the debris-covered zone. It is surmised that the glacier sole crosses the freezing front close to where the basal debris beds are upwarped towards the surface. Here, basal water is confined, and freezes to the under side of the glacier in thick beds of regelation ice which are uplifted to the surface along with the debris-laden beds. Ablation losses effectively cease beneath the blanket of debris covering the tongue.The transition from wet-based to dry-based conditions at the glacier sole is a powerful mechanism for entraining debris into a glacier and, in the case of “Whisky Glacier”, for lifting debris to the surface. It is suggested that this may be a mechanism for forming some polar rock glaciers.


2000 ◽  
Vol 31 ◽  
pp. 300-306 ◽  
Author(s):  
Daniel S. Vonder Mühll ◽  
Christian Hauck ◽  
Frank Lehmann

AbstractAt two permafrost sites in the Swiss Alps a range of geophysical methods were applied to model the structure of the subsurface. At both sites, borehole information was used to verify the quality of the model results. On the Murtèl-Corvatsch rock glacier (2700 m a.s.L; upper Engadine) a 58 m deep core drilling was performed in 1987. D. c resistivity measurements, refraction seismics, ground-penetrating radar (GPR) and gravimetric surveys allowed the shape of the permafrost table beneath the marked surface microtopography to be determined and the lateral extent of a deeper shear horizon to be established The validity of each method was verified by the borehole information (cores, density log and temperature). A coherent model of the rock-glacier structure was developed. At the Schilthorn (2970 m a.s.L; Bernese Oberland), it was not clear whether permafrost is in fact present. Various geophysical surveys (d.c. resistivity tomography, refraction seismics, GPR and EM-31) gave results that were not typical of permafrost environments. A 14 m percussion drilling revealed warm permafrost and a very low ice content. These geotechnical and geothermal data allowed reinterpretation of the geophysical results, improving modelling of ground conditions. The paper demonstrates that in the difficult terrain of Alpine permafrost, boreholes may be critical in calibration and verification of the results of geophysical methods. The most useful combinations of geophysical techniques proved to be (a) seismics with d.c. resistivity, and (b) gravimetry with GPR.


The Holocene ◽  
2011 ◽  
Vol 22 (7) ◽  
pp. 761-771 ◽  
Author(s):  
Matthias Rode ◽  
Andreas Kellerer-Pirklbauer

Schmidt-hammer rebound values ( R-values) enable relative-age dating of landforms, with R-values relating to degree of weathering and therefore length of exposure. This method – recently termed as Schmidt-hammer exposure-age dating (SHD) – was applied to date five rock glaciers (size range, 0.01–0.12 km2) and one recent rockfall deposit at the study area Schöderkogel-Eisenhut, in the Schladminger Tauern Range (14°03′E, 47°15′N), Austria. The rock glaciers consist of gneiss or high metamorphic series of mica-schist that are comparable in their R-values. Four of them are relict (permafrost absent) and one is intact (containing patches of permafrost). On each of the five rock glaciers, SHD was carried out at 4–6 sites (50 measurements per site) along a longitudinal transect from the frontal ridge to the root zone. Results at all five rock glaciers are generally consistent with each other sharing statistically significant R-values along transects. The range between the highest and the lowest mean R-value at each of the five rock glaciers is 9.9–5.2. Using rock glacier length and surface velocity data from nearby sites, the rock glacier development must have lasted for several thousand years. Furthermore, by using SHD results from rock glaciers of known age from other sites in the region with comparable geology, approximate surface ages of 6.7–11.4 ka were estimated. This indicates long formation periods for all five rock glaciers. Our results suggest that many of the 1300 relict rock glaciers in central and eastern Austria were formed over a long period during the Lateglacial and Holocene period.


2008 ◽  
Vol 22 (13) ◽  
pp. 2180-2195 ◽  
Author(s):  
Karina L. Lecomte ◽  
Juan Pablo Milana ◽  
Stella M. Formica ◽  
Pedro J. Depetris

GeoResJ ◽  
2017 ◽  
Vol 14 ◽  
pp. 67-79 ◽  
Author(s):  
Mateo A Martini ◽  
Jorge A Strelin ◽  
Eliseo Flores ◽  
Ricardo A Astini ◽  
Michael R Kaplan

2015 ◽  
Vol 7 (8) ◽  
pp. 10269-10294 ◽  
Author(s):  
Álvaro Gómez-Gutiérrez ◽  
José de Sanjosé-Blasco ◽  
Javier Lozano-Parra ◽  
Fernando Berenguer-Sempere ◽  
Javier de Matías-Bejarano

Sign in / Sign up

Export Citation Format

Share Document