scholarly journals Does HDR Pre-Processing Improve the Accuracy of 3D Models Obtained by Means of two Conventional SfM-MVS Software Packages? The Case of the Corral del Veleta Rock Glacier

2015 ◽  
Vol 7 (8) ◽  
pp. 10269-10294 ◽  
Author(s):  
Álvaro Gómez-Gutiérrez ◽  
José de Sanjosé-Blasco ◽  
Javier Lozano-Parra ◽  
Fernando Berenguer-Sempere ◽  
Javier de Matías-Bejarano
Spatium ◽  
2016 ◽  
pp. 30-36 ◽  
Author(s):  
Petar Pejic ◽  
Sonja Krasic

Digital three-dimensional models of the existing architectonic structures are created for the purpose of digitalization of the archive documents, presentation of buildings or an urban entity or for conducting various analyses and tests. Traditional methods for the creation of 3D models of the existing buildings assume manual measuring of their dimensions, using the photogrammetry method or laser scanning. Such approaches require considerable time spent in data acquisition or application of specific instruments and equipment. The goal of this paper is presentation of the procedure for the creation of 3D models of the existing structures using the globally available web resources and free software packages on standard PCs. This shortens the time of the production of a digital three-dimensional model of the structure considerably and excludes the physical presence at the location. In addition, precision of this method was tested and compared with the results acquired in a previous research.


Author(s):  
N. Bruno ◽  
R. Roncella

<p><strong>Abstract.</strong> Google Street View is a technology implemented in several Google services/applications (e.g. Google Maps, Google Earth) which provides the user, interested in viewing a particular location on the map, with panoramic images (represented in equi-rectangular projection) at street level. Generally, consecutive panoramas are acquired with an average distance of 5&amp;ndash;10<span class="thinspace"></span>m and can be compared to a traditional photogrammetric strip and, thus, processed to reconstruct portion of city at nearly zero cost. Most of the photogrammetric software packages available today implement spherical camera models and can directly process images in equi-rectangular projection. Although many authors provided in the past relevant works that involved the use of Google Street View imagery, mainly for 3D city model reconstruction, very few references can be found about the actual accuracy that can be obtained with such data. The goal of the present work is to present preliminary tests (at time of writing just three case studies has been analysed) about the accuracy and reliability of the 3D models obtained from Google Street View panoramas.</p>


2020 ◽  
Vol 12 (10) ◽  
pp. 1626 ◽  
Author(s):  
Dag-Øyvind E. Solem ◽  
Erich Nau

Digital 3D documentation methods such as Image-Based Modelling (IBM) and laser scanning have become increasingly popular for the recording of entire archaeological sites and landscapes, excavations and single finds during the last decade. However, they have not been applied in any significant degree to miniature incisions such as graffiti. In the same period, Reflectance Transformation Imaging (RTI) has become one of the most popular methods used to record and visualize this kind of heritage, though it lacks the benefits of 3D documentation. The aim of this paper is to introduce two new ways of combining IBM and RTI, and to assess these different techniques in relation to factors such as usability, time-efficiency, cost-efficiency and accuracy. A secondary aim is to examine the influence of two different 3D processing software packages on these factors: The widely used MetaShape (MS) and a more expensive option, RealityCapture (RC). The article shows that there is currently no recording technique that is optimal regarding all four aforementioned factors, and the way to record and produce results must be chosen based on a prioritization of these. However, we argue that the techniques combining RTI and IBM might be the overall best ways to record miniature incisions. One of these combinations is time-efficient and relatively cost-efficient, and the results have high usability even though the 3D models generated have low accuracy. The other combination has low time- and cost-efficiency but generates the most detailed 3D models of the techniques tested. In addition to cost-efficiency, the main difference between the 3D software packages tested is that RC is much faster than MS. The accuracy assessment remains inconclusive; while RC generally produces more detailed 3D models than MS, there are also areas of these models where RC creates more noise than MS.


Author(s):  
Pavol Voza´r ◽  
Vladimi´r Sleza´k ◽  
Kamil Krava´rik

This paper deals with advanced 3D computer-aided technologies used for modelling and simulation for decommissioning purposes. Within the A-1 NPP decommissioning process a set of activities is needed to perform successful dismantling and decontamination of rooms and equipment. Optimal process of performance of D&D of underground storage tanks and auxiliary rooms were used on the base of simulation outputs. The mockup tests were performed before using remotely controlled manipulators. The human presence during decontamination and dismantling is case by case excluded due to the radiation safety and ALARA approach. Within Bohunice A-1 Decommissioning Project an advanced computer-aided technologies were/are developed and used. Modelling software packages EUCLID and 3Dipsos together with 3D-laser scanner SOISIC are used for creating of 3D models and also for the verification of as-built state of selected systems and facilities. Software IGRIP is used for computer simulations of all D&D tasks. The 3D modelling and simulation of selected rooms and technological equipment of the A-1 NPP are used consequently in the process of decommissioning preparation and implementation. 3D modelling for the verification and simulation of operating steps is presented in the paper and its contribution to avoiding of collisions and non-optimal interventions into the building and technological parts during performing particular works is evaluated. The application of 3D models for the verification and simulation of operating steps significantly contribute to the optimal planning of D&D procedures. Minimisation of occupation doses of realisation personnel is main reason why the 3D modelling and simulations are used. The paper also presented 3D models of rooms chosen to simulate specific operations (decontamination, handling of radioactive wastes and/or dismantling by remote controlled manipulators) without risk accident, high dose rates of personnel etc. Process of selection of optimal operating procedure for decontamination and dismantling is presented as well as achieved experiences and recommendations for further work.


2016 ◽  
Vol 6 (1) ◽  
pp. 35-40
Author(s):  
M. Ghindea ◽  
A. Cătărig ◽  
R. Ballok

Abstract Based on the results of experimental tests, presented in the first part of this paper, Part 1-Experimental Investigations (Ghindea M., Catarig A., Ballok R.) advanced numerical simulations were performed using FEM based software Abaqus. The recently arise of high speed computers and advanced FEM software packages allow to create and solve extensively detailed 3D models. The aim of this second part of the paper is to develop accurate FEM models for better approach of the studied beam-to-column connections. The paper presents the designed numerical models and the results for four bolted beam-to-column connections using top-and-seat and/or web angle cleats, in different configurations. The objective of this paper is to achieve functional numerical models which, by faithfully running, reproduce the experimental results. Thus, calibrating the numerical results with the experimental ones it can be perform then parametric studies, achieving reliable results for similar configurations of joints. The results obtained after numerical simulations were compared with experimental data. The behavior moment-rotation curve and the deformation process of the experimental captured specimens were virtually reproduced with minimum deviation.


Author(s):  
R. Zhang ◽  
D. Schneider ◽  
B. Strauß

The aim of a current study at the Institute of Hydraulic Engineering and Technical Hydromechanics at TU Dresden is to develop a new injection method for quick and economic sealing of dikes or dike bodies, based on a new synthetic material. To validate the technique, an artificial part of a sand dike was built in an experimental hall. The synthetic material was injected, which afterwards spreads in the inside of the dike. After the material was fully solidified, the surrounding sand was removed with an excavator. In this paper, two methods, which applied terrestrial laser scanning (TLS) and structure from motion (SfM) respectively, for the acquisition of a 3D point cloud of the remaining shapes are described and compared. Combining with advanced software packages, a triangulated 3D model was generated and subsequently the volume of vertical sections of the shape were calculated. As the calculation of the volume revealed differences between the TLS and the SfM 3D model, a thorough qualitative comparison of the two models will be presented as well as a detailed accuracy assessment. The main influence of the accuracy is caused by generalisation in case of gaps due to occlusions in the 3D point cloud. Therefore, improvements for the data acquisition with TLS and SfM for such kind of objects are suggested in the paper.


2020 ◽  
Author(s):  
Ryan L Payton

&lt;p&gt;Researchers often have to carefully select data for figures to best show their results for a static 2D format such as a conference poster or outreach handout. This can result in the scientific message being harder to understand or only part of the story being visualised. Augmented reality can help in improving the clarity of temporal data as well as the understanding of 3D structures which may be challenging to otherwise visualise.&lt;/p&gt;&lt;p&gt;A series of software packages may be used in order to take video files (MP4, AVI etc&amp;#8230;) and 3D model files (OBJ, STL, PLY etc&amp;#8230;) and pair them with a target image, detectable by a mobile app for Android or iOS. The Vuforia engine plug-in for Unity allows for target images to be imported for use with AR and paired with a 3D model or video in Unity. Manipulation of the AR element is achieved using the Lean-Touch asset in Unity, allowing for scaling, rotation and movement.&lt;/p&gt;&lt;p&gt;The incorporation of AR in science communication at a professional and public level creates a memorable interaction which is also enriched by greater&lt;span&gt;&amp;#160; &lt;/span&gt;scientific clarity. The interactive element of AR, especially using Lean-Touch, makes it an appealing tool for the public and children which results in greater engagement with science. The ability to show more data such as full simulations or experiment time lapses rather than a select series of still images also makes this an appealing tool for researchers in a variety of fields including modellers, experimentalists and anyone using digital data.&lt;/p&gt;


2017 ◽  
Vol 23 (5) ◽  
pp. 967-977 ◽  
Author(s):  
Vipin N. Tondare ◽  
John S. Villarrubia ◽  
András E. Vladár

AbstractThree-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. Nowadays, there exist several commercially available stereophotogrammetry software packages. For testing these software packages, in this study we used Monte Carlo simulated SEM images of virtual samples. A virtual sample is a model in a computer, and its true dimensions are known exactly, which is impossible for real SEM samples due to measurement uncertainty. The simulated SEM images can be used for algorithm testing, development, and validation. We tested two stereophotogrammetry software packages and compared their reconstructed 3D models with the known geometry of the virtual samples used to create the simulated SEM images. Both packages performed relatively well with simulated SEM images of a sample with a rough surface. However, in a sample containing nearly uniform and therefore low-contrast zones, the height reconstruction error was ≈46%. The present stereophotogrammetry software packages need further improvement before they can be used reliably with SEM images with uniform zones.


Author(s):  
R. Zhang ◽  
D. Schneider ◽  
B. Strauß

The aim of a current study at the Institute of Hydraulic Engineering and Technical Hydromechanics at TU Dresden is to develop a new injection method for quick and economic sealing of dikes or dike bodies, based on a new synthetic material. To validate the technique, an artificial part of a sand dike was built in an experimental hall. The synthetic material was injected, which afterwards spreads in the inside of the dike. After the material was fully solidified, the surrounding sand was removed with an excavator. In this paper, two methods, which applied terrestrial laser scanning (TLS) and structure from motion (SfM) respectively, for the acquisition of a 3D point cloud of the remaining shapes are described and compared. Combining with advanced software packages, a triangulated 3D model was generated and subsequently the volume of vertical sections of the shape were calculated. As the calculation of the volume revealed differences between the TLS and the SfM 3D model, a thorough qualitative comparison of the two models will be presented as well as a detailed accuracy assessment. The main influence of the accuracy is caused by generalisation in case of gaps due to occlusions in the 3D point cloud. Therefore, improvements for the data acquisition with TLS and SfM for such kind of objects are suggested in the paper.


ACTA IMEKO ◽  
2016 ◽  
Vol 5 (2) ◽  
pp. 64 ◽  
Author(s):  
Fausta Fiorillo ◽  
Marco Limongiello ◽  
Belén Jiménez Fernández-Palacios

<p class="normal">The main objective of this paper is to analyse the potential as well as the limitations of an action camera (GoPro Hero 3 Black) in photogrammetric application for architectural cultural heritage reconstruction. The investigations were carried out in a site of notable historical interest, “Villa Giulia Felice” in Pompeii, Italy. In order to estimate the work pipeline, the time-consuming processing and the output product accuracy using fisheye camera images, three commercial image processing software packages were tested: Agisoft PhotoScan, Pix4Dmapper and 3DF Zephyr Aerial. Several comparisons among the final 3D models produced have been developed and the results achieved. Despite the problems found related to lens distortion and the small distance from the camera to the object (average distance ~80 cm), the test has provided good results in terms of accuracy (average error 2 - 3.5 cm) and reliability.</p>


Sign in / Sign up

Export Citation Format

Share Document