Small angle x-ray scattering for measuring pore-size distributions in porous low-κ films

2003 ◽  
Vol 82 (4) ◽  
pp. 544-546 ◽  
Author(s):  
K. Omote ◽  
Y. Ito ◽  
S. Kawamura
2002 ◽  
Vol 81 (12) ◽  
pp. 2232-2234 ◽  
Author(s):  
E. Huang ◽  
M. F. Toney ◽  
W. Volksen ◽  
D. Mecerreyes ◽  
P. Brock ◽  
...  

2001 ◽  
Vol 714 ◽  
Author(s):  
Kazuhiko Omote ◽  
Shigeru Kawamura

ABSTRACTWe have successively developed a new x-ray scattering technique for a non-destructive determination of pore-size distributions in porous low-κ thin films formed on thick substrates. The pore size distribution in a film is derived from x-ray diffuse scattering data, which are measured using offset θ/2θ scans to avoid strong specular reflections from the film surface and its substrate. Γ-distribution mode for the pores in the film is used in the calculation. The average diameter and the dispersion parameter of the Γ-distribution function are varied and refined by computer so that the calculated scattering pattern best matches to the experimental pattern. The technique has been used to analyze porous methyl silsesquioxane (MSQ) films. The pore size distributions determined by the x-ray scattering technique agree with that of the commonly used gas adsorption technique. The x-ray technique has been also used successfully determine small pores less than one nanometer in diameter, which is well below the lowest limit of the gas adsorption technique.


1991 ◽  
Vol 74 (10) ◽  
pp. 2538-2546 ◽  
Author(s):  
Susan Krueger ◽  
Gabrielle G. Long ◽  
David R. Black ◽  
Dennis Minor ◽  
Pete R. Jemian ◽  
...  

1994 ◽  
Vol 346 ◽  
Author(s):  
D.W. Hua ◽  
J. Anderson ◽  
S. Hæreid ◽  
D.M. Smith ◽  
G. Beaucage

ABSTRACTSilica aerogels have numerous properties which suggest applications such as ultra high efficiency thermal insulation. These properties relate directly to the aerogel's pore size distribution. The micro and meso pore size ranges can be investigated by normal small angle x-ray scattering and possibly, nitrogen adsorption. However, the measurement of larger pores (> 250 Å) is more difficult. Due to their limited mechanical strength, mercury porosimetry and nitrogen condensation can disrupt the gel structure and electron microscopy provides only limited large scale structure information. The use of small angle light scattering techniques seems to have promise, the only hurdle is that aerogels exhibit significant multiple scattering. This can be avoided if one observes the gels in the wet stage since the structure of the aerogel should be very similar to the wet gel (as the result of supercritical drying). Thus, if one can match the refractive index, the morphology can be probed. The combination of certain alcoholic solvents fit this index matching criteria. Preliminary results for the gel network (micron range) and primary particle structure (nanometer) are reported by using small angle light scattering and ultra-small angle x-ray scattering. The effects on structure over the length scale range of <1 nm to >5 μπι under different conditions (precursors, pH, etc.) are presented. The change in structure of an aerogel during isostatic compaction to 228 MPa (to simulate drying from wetting solvents) are also discussed.


1968 ◽  
Vol 12 ◽  
pp. 87-96
Author(s):  
R. W. Gould ◽  
S. R. Bates

AbstractIt has been recently shown that particle size distributions can be determined from small angle x-ray scattering data. Size distributions have previously been measured in aluminum-zinc and aluminum-silver alloys containing spherical Guinier-Preston zones. Inorder to obtain the size distribution it is only necessary to calculate the Guinier radius and the Porod radius.Dispersion hardened nickel alloys containing small spherical particles of thoria appear to be amenable to this type of analysis. A nickel-20% chromium-2% ThO2 alloy was selected for this study. The particle size distribution obtained by small angle x-ray scattering is compared with the transmission electron microscopy results found in the literature.


Author(s):  
M.A. Gardner ◽  
A.N. North ◽  
J.C. Dore ◽  
C. Salinas-Martinez de Lecea ◽  
D. Cazorla-Amoros

Sign in / Sign up

Export Citation Format

Share Document