A New X-Ray Scattering Method for Determining Pore-Size Distribution in Low-k Thin Films

2001 ◽  
Vol 714 ◽  
Author(s):  
Kazuhiko Omote ◽  
Shigeru Kawamura

ABSTRACTWe have successively developed a new x-ray scattering technique for a non-destructive determination of pore-size distributions in porous low-κ thin films formed on thick substrates. The pore size distribution in a film is derived from x-ray diffuse scattering data, which are measured using offset θ/2θ scans to avoid strong specular reflections from the film surface and its substrate. Γ-distribution mode for the pores in the film is used in the calculation. The average diameter and the dispersion parameter of the Γ-distribution function are varied and refined by computer so that the calculated scattering pattern best matches to the experimental pattern. The technique has been used to analyze porous methyl silsesquioxane (MSQ) films. The pore size distributions determined by the x-ray scattering technique agree with that of the commonly used gas adsorption technique. The x-ray technique has been also used successfully determine small pores less than one nanometer in diameter, which is well below the lowest limit of the gas adsorption technique.

2002 ◽  
Vol 81 (12) ◽  
pp. 2232-2234 ◽  
Author(s):  
E. Huang ◽  
M. F. Toney ◽  
W. Volksen ◽  
D. Mecerreyes ◽  
P. Brock ◽  
...  

1991 ◽  
Vol 74 (10) ◽  
pp. 2538-2546 ◽  
Author(s):  
Susan Krueger ◽  
Gabrielle G. Long ◽  
David R. Black ◽  
Dennis Minor ◽  
Pete R. Jemian ◽  
...  

Author(s):  
Fariba Safaei ◽  
Shahla Khalili ◽  
Saied Nouri Khorasani ◽  
Laleh Ghasemi-Mobarakeh ◽  
Rasoul Esmaeely Neisiany

In this study, the effect of porogenic solvents on pore size distribution of the polycaprolactone (PCL) thin films was investigated. Five thin PCL films were prepared using the solvent-casting method. Chloroform, Methylene Chloride (MC) and three different compositions of MC/ Dimethylformamide (DMF) (80/20, 50/50 and 20/80) were used as solvents. Scanning Electron Microscopy (SEM) investigations were employed to study morphology and consequently the pore size distribution of the prepared films. The PCL films made by chloroform and MC as a solvent were completely non-porous. Whereas the other films (made by a combination of MC and DMF) showed both uni-modal and bi-modal pore size distributions.


2019 ◽  
Vol 92 ◽  
pp. 15006
Author(s):  
Arghya Das ◽  
Sumit Basu ◽  
Ankit Kumar

Shale rock consists of a complex matrix structure due to presence of nano-scale pores. Owing to such complexity determination and/or prediction of the mineralogical, mechanical, and petrophysical properties (e.g., permeability, porosity, pore size distribution, etc.) of shale is a challenging task. A preliminary estimation of these properties is essential before shale gas exploration. In this study, experimental and numerical analyses are conducted to estimate the permeability, porosity, and pore size distribution of a typical shale sample. Gas adsorption experiments were conducted to characterize the pore spaces of the shale via analysing the isotherms. Using conventional theories, such as BET and BJH methods, surface area, pore volume, and pore size distributions were estimated. On the other hand, gross porosity of the shale samples was measured by conducting gas pycnometry experiment. Finally based on the obtained results an equivalent pore network model is constructed which accounts for the pore size distributions and low pore connectivity in the shale matrix. We have simulated gas flow through the network to estimate permeability of the shale. This model considers Knudsen diffusion and the effects of gas slippage on permeability. Further parametric study shows that the apparent permeability primarily depends on the reservoir pressure, pore coordination number and porosity.


2006 ◽  
Vol 31 (6) ◽  
pp. 466-471 ◽  
Author(s):  
Trevor M. Willey ◽  
Tony van Buuren ◽  
Jonathan R. I. Lee ◽  
George E. Overturf ◽  
John H. Kinney ◽  
...  

2002 ◽  
Vol 40 (19) ◽  
pp. 2170-2177 ◽  
Author(s):  
Hae-Jeong Lee ◽  
Christopher L. Soles ◽  
Da-Wei Liu ◽  
Barry J. Bauer ◽  
Wen-Li Wu

Sign in / Sign up

Export Citation Format

Share Document